Murphy Michael R, Ganapathi Mythily, Lee Teresa M, Fisher Joshua M, Patel Megha V, Jayakar Parul, Buchanan Amanda, Rippert Alyssa L, Ahrens-Nicklas Rebecca C, Nair Divya, Soni Rajesh K, Yin Yue, Yang Feiyue, Reilly Muredach P, Chung Wendy K, Wu Xuebing
Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
bioRxiv. 2025 Jan 28:2025.01.02.630345. doi: 10.1101/2025.01.02.630345.
The heart employs a specialized ribosome in its muscle cells to translate genetic information into proteins, a fundamental adaptation with an elusive physiological role. Its significance is underscored by the discovery of neonatal patients suffering from often fatal heart failure caused by severe dilated cardiomyopathy when both copies of the gene are mutated. RPL3L is a muscle-specific paralog of the ubiquitous ribosomal protein L3 (RPL3), which makes the closest contact of any protein to the ribosome's RNA-based catalytic center. -linked heart failure represents the only known human disease associated with tissue-specific ribosomes, yet the underlying pathogenetic mechanisms remain poorly understood. Intriguingly, disease is linked to a large number of mostly missense variants in , and -knockout resulted in no severe heart defect in either human or mice, challenging the prevailing view that autosomal recessive diseases are caused by loss-of-function mutations. Here, we report three new cases of -linked severe neonatal heart failure and present a unifying pathogenetic mechanism by which a large number of variants in the muscle-specific ribosome led to disease. Specifically, affected families often carry one of two recurrent toxic gain-of-function variants alongside a family-specific putative loss-of-function variant. While the non-recurrent variants often trigger partial compensation of similar to -knockout mice, both recurrent variants exhibit increased affinity for the RPL3/RPL3L chaperone GRWD1 and 60S biogenesis factors, sequester 28S rRNA in the nucleus, disrupt ribosome biogenesis, and trigger severe cellular toxicity that extends beyond the loss of ribosomes. These findings provide critical insights for genetic screening and therapeutic development of neonatal heart failure. Our results suggest that gain-of-toxicity mechanisms may be more prevalent in autosomal recessive diseases, and a combination of gain-of-toxicity and loss-of-function mechanisms could underlie many diseases involving genes with paralogs.
心脏在其肌肉细胞中使用一种特殊的核糖体将遗传信息转化为蛋白质,这是一种具有难以捉摸的生理作用的基本适应性变化。基因的两个拷贝均发生突变时,新生儿会患上由严重扩张型心肌病引起的、通常致命的心力衰竭,这一发现凸显了其重要性。RPL3L是普遍存在的核糖体蛋白L3(RPL3)的肌肉特异性旁系同源物,它是与核糖体基于RNA的催化中心接触最紧密的蛋白质。与核糖体相关的心力衰竭是唯一已知的与组织特异性核糖体相关的人类疾病,但其潜在的发病机制仍知之甚少。有趣的是,该疾病与大量主要为错义的RPL3L变体有关,而RPL3L基因敲除在人类或小鼠中均未导致严重的心脏缺陷,这对常染色体隐性疾病是由功能丧失突变引起的主流观点提出了挑战。在此,我们报告了3例与RPL3L相关的严重新生儿心力衰竭新病例,并提出了一种统一的发病机制,即肌肉特异性核糖体中的大量变体导致了疾病。具体而言,受影响的家族通常携带两种复发性毒性功能获得性变体之一以及一种家族特异性的假定功能丧失性变体。虽然非复发性变体通常会引发类似于RPL3L基因敲除小鼠的部分补偿,但两种复发性变体均表现出对RPL3/RPL3L伴侣蛋白GRWD1和60S生物发生因子的亲和力增加,将28S rRNA隔离在细胞核中,破坏核糖体生物发生,并引发严重的细胞毒性,这种毒性超出了核糖体丧失的范围。这些发现为新生儿心力衰竭的基因筛查和治疗开发提供了关键见解。我们的结果表明,毒性功能获得机制在常染色体隐性疾病中可能更为普遍,毒性功能获得和功能丧失机制的结合可能是许多涉及旁系同源基因的疾病的基础。