Vega Ibáñez Francisco, Verbeeck Jo
EMAT, University of Antwerp, Groenenborgerlaan 171 2020, Antwerp, Belgium.
Nanocenter of excellence, University of Antwerp, Groenenborgerlaan 171 2020, Antwerp, Belgium.
Microsc Microanal. 2025 Feb 17;31(1). doi: 10.1093/mam/ozae125.
The challenge of imaging low-density objects in an electron microscope without causing beam damage is significant in modern transmission electron microscopy. This is especially true for life science imaging, where the sample, rather than the instrument, still determines the resolution limit. Here, we explore whether we have to accept this or can progress further in this area. To do this, we use numerical simulations to see how much information we can obtain from a weak phase object at different electron doses. Starting from a model with four phase values, we compare Zernike phase contrast with measuring diffracted intensity under multiple random phase illuminations to solve the inverse problem. Our simulations have shown that diffraction-based methods perform better than the Zernike method, as we have found and addressed a normalization issue that, in some other studies, led to an overly optimistic representation of the Zernike setup. We further validated this using more realistic 2D objects and found that random phase illuminated diffraction can be up to five times more efficient than an ideal Zernike implementation. These findings suggest that diffraction-based methods could be a promising approach for imaging beam-sensitive materials and that current low-dose imaging methods are not yet at the quantum limit.
在现代透射电子显微镜中,在不造成束流损伤的情况下对低密度物体进行成像面临着重大挑战。这在生命科学成像中尤为如此,在生命科学成像中,决定分辨率极限的仍然是样品而非仪器。在此,我们探讨我们是必须接受这一现状,还是能够在该领域取得进一步进展。为此,我们使用数值模拟来查看在不同电子剂量下,我们能从弱相位物体中获取多少信息。从具有四个相位值的模型出发,我们将泽尼克相衬与在多个随机相位照明下测量衍射强度以解决逆问题进行比较。我们的模拟表明,基于衍射的方法比泽尼克方法表现更好,因为我们发现并解决了一个归一化问题,在其他一些研究中,该问题导致对泽尼克装置的表现过于乐观。我们使用更逼真的二维物体进一步验证了这一点,发现随机相位照明衍射的效率可比理想的泽尼克实现方式高出五倍。这些发现表明,基于衍射的方法可能是对束流敏感材料进行成像的一种有前景的方法,并且当前的低剂量成像方法尚未达到量子极限。