Raptis Savvas, Lalti Ahmad, Lindberg Martin, Turner Drew L, Caprioli Damiano, Burch James L
Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA.
Northumbria University, Newcastle upon Tyne, UK.
Nat Commun. 2025 Jan 13;16(1):488. doi: 10.1038/s41467-024-55641-9.
Collisionless shock waves, found in supernova remnants, interstellar, stellar, and planetary environments, and laboratories, are one of nature's most powerful particle accelerators. This study combines in situ satellite measurements with recent theoretical developments to establish a reinforced shock acceleration model for relativistic electrons. Our model incorporates transient structures, wave-particle interactions, and variable stellar wind conditions, operating collectively in a multiscale set of processes. We show that the electron injection threshold is on the order of suprathermal range, obtainable through multiple different phenomena abundant in various plasma environments. Our analysis demonstrates that a typical shock can consistently accelerate electrons into very high (relativistic) energy ranges, refining our comprehension of shock acceleration while providing insight on the origin of electron cosmic rays.
无碰撞激波存在于超新星遗迹、星际、恒星和行星环境以及实验室中,是自然界最强大的粒子加速器之一。本研究将卫星原位测量与最新理论进展相结合,建立了相对论电子的增强激波加速模型。我们的模型纳入了瞬态结构、波粒相互作用和可变恒星风条件,这些在多尺度过程中共同作用。我们表明,电子注入阈值在超热范围量级,可通过各种等离子体环境中大量存在的多种不同现象获得。我们的分析表明,典型的激波能够持续将电子加速到非常高的(相对论)能量范围,深化了我们对激波加速的理解,同时为电子宇宙射线的起源提供了见解。