Suppr超能文献

无症状性克雅氏病中重新配置的代谢脑网络。

Reconfigured metabolism brain network in asymptomatic Creutzfeldt-Jakob disease.

作者信息

Kong Yu, Chen Zhongyun, Zhang Jing, Wang Yihao, Chu Min, Nan Haitian, Cui Yue, Jiang Deming, Wu Liyong

机构信息

Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.

出版信息

Neurobiol Dis. 2025 Mar;206:106805. doi: 10.1016/j.nbd.2025.106805. Epub 2025 Jan 13.

Abstract

BACKGROUND

Investigating brain metabolic networks is crucial for understanding the pathogenesis and functional alterations in Creutzfeldt-Jakob disease (CJD). However, studies on presymptomatic individuals remain limited. This study aimed to examine metabolic network topology reconfiguration in asymptomatic carriers of the PRNP G114V mutation.

METHODS

Seven asymptomatic PRNP G114V mutation carriers from a familial genetic CJD (gCJD) cohort, 43 CJD patients, and 35 healthy controls were included. All participants underwent neuropsychological assessments, genetic testing, and F-fluorodeoxyglucose positron emission tomography (18F-FDG PET)/MRI scans. Voxel-based gray matter volume and FDG PET standardized uptake value ratios (SUVRs) were analyzed between asymptomatic PRNP G114V mutation carriers and healthy controls and between CJD patients and controls. Graph theory and sparse inverse covariance estimation (SICE) were used to assess the whole-brain metabolic connectomes and topological properties. Spatial independent component analysis (ICA) was used to evaluate subnetworks, including the default mode network (DMN), salience network (SN), and central executive network (CEN).

RESULTS

With respect to global properties, assortativity was significantly increased in asymptomatic carriers, which was consistent with the findings in CJD patients. We revealed lost hubs in the right anterior cingulate, left ventral prefrontal lobe, left parahippocampal gyrus, and left lingual gyrus and reconfigured hubs in prefrontal lobes, including right ventromedial prefrontal cortex, right anterior prefrontal cortex, and right middle frontal gyrus of the orbit in asymptomatic carriers compared with healthy controls, which overlapped with the comparisons between CJD patients and controls. Alterations in the local parameters and metabolic connectivity in the left parahippocampal gyrus were most pronounced. Among the subnetworks, asymptomatic carriers presented higher assortativity and lower hierarchy in the SN, whereas the global parameters of the DMN and CEN were not significantly altered. The DMN and SN showed partial hypoconnectivity and hyperconnectivity, whereas the CEN mainly showed significantly enhanced connectivity in asymptomatic PRNP carriers.

CONCLUSIONS

This study revealed altered brain metabolic topology and connectomics in asymptomatic PRNP G114V mutation carriers, which could be detected before gray matter or regional metabolic changes, suggesting that metabolism topology reconfiguration may serve as a sensitive imaging biomarker for investigating early CJD pathological changes.

摘要

背景

研究脑代谢网络对于理解克雅氏病(CJD)的发病机制和功能改变至关重要。然而,对症状前个体的研究仍然有限。本研究旨在检查PRNP G114V突变无症状携带者的代谢网络拓扑重构情况。

方法

纳入来自家族性遗传CJD(gCJD)队列的7名无症状PRNP G114V突变携带者、43名CJD患者和35名健康对照。所有参与者均接受神经心理学评估、基因检测以及F-氟脱氧葡萄糖正电子发射断层扫描(18F-FDG PET)/磁共振成像(MRI)扫描。分析无症状PRNP G114V突变携带者与健康对照之间以及CJD患者与对照之间基于体素的灰质体积和FDG PET标准化摄取值比率(SUVRs)。采用图论和稀疏逆协方差估计(SICE)来评估全脑代谢连接组和拓扑特性。利用空间独立成分分析(ICA)评估子网,包括默认模式网络(DMN)、突显网络(SN)和中央执行网络(CEN)。

结果

在全局特性方面,无症状携带者的聚类系数显著增加,这与CJD患者的研究结果一致。与健康对照相比,我们发现无症状携带者右侧前扣带回、左侧腹侧前额叶、左侧海马旁回和左侧舌回的枢纽节点丢失,前额叶出现枢纽节点重构,包括右侧腹内侧前额叶皮质、右侧前额叶前部皮质和右侧眶额中回,这与CJD患者和对照之间的比较结果重叠。左侧海马旁回的局部参数和代谢连接性改变最为明显。在子网中,无症状携带者在SN中表现出更高的聚类系数和更低的层级,而DMN和CEN的全局参数没有显著改变。DMN和SN表现出部分连接减弱和连接增强,而CEN在无症状PRNP携带者中主要表现为连接显著增强。

结论

本研究揭示了无症状PRNP G114V突变携带者脑代谢拓扑和连接组学的改变,这些改变可在灰质或区域代谢变化之前被检测到,表明代谢拓扑重构可能作为一种敏感的成像生物标志物用于研究早期CJD的病理变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验