Hamada Nobuyuki, Matsuya Yusuke, Zablotska Lydia B, Little Mark P
Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba 270-1194, Japan.
Faculty of Health Sciences, Hokkaido University, Hokkaido 060-0812, Japan; Research Group for Radiation Transport Analysis, Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195, Japan.
Mutat Res Rev Mutat Res. 2025 Jan-Jun;795:108531. doi: 10.1016/j.mrrev.2025.108531. Epub 2025 Jan 13.
Biological effects of ionizing radiation vary not merely with total dose but also with temporal dose distribution. Sparing dose protraction effects, in which dose protraction reduces effects of radiation have widely been accepted and generally assumed in radiation protection, particularly for stochastic effects (e.g., solid cancer). In contrast, inverse dose protraction effects (IDPEs) in which dose protraction enhances radiation effects have not been well recognized, nor comprehensively reviewed. Here, we review the current knowledge on IDPEs of low linear energy transfer (LET) radiation. To the best of our knowledge, since 1952, 157 biology, epidemiology or clinical papers have reported IDPEs following external or internal low-LET irradiation with photons (X-rays, γ-rays), β-rays, electrons, protons or helium ions. IDPEs of low-LET radiation have been described for biochemical changes in cell-free macromolecules (DNA, proteins or lipids), DNA damage responses in bacteria and yeasts, DNA damage, cytogenetic changes, neoplastic transformation and cell death in mammalian cell cultures of human, rodent or bovine origin, mutagenesis in silkworms, cytogenetic changes, induction of cancer (solid tumors and leukemia) and non-cancer effects (male sterility, cataracts and diseases of the circulatory system), tumor inactivation and survival in non-human mammals (rodents, rabbits, dogs and pigs), and induction of cancer and non-cancer effects (skin changes and diseases of the circulatory system) in humans. In contrast to a growing body of phenomenological evidence for manifestations of IDPEs, there is limited knowledge on mechanistic underpinnings, but proposed mechanisms involve cell cycle-dependent resensitization and low dose hyper-radiosensitivity. These necessitate continued studies for further mechanistic developments and assessment of implications of scientific evidence for radiation protection (e.g., in terms of a dose rate effectiveness factor).
电离辐射的生物学效应不仅随总剂量而变化,还随时间剂量分布而变化。剂量延长的保护效应,即剂量延长可降低辐射效应,已被广泛接受,并在辐射防护中普遍采用,尤其是对于随机效应(如实体癌)。相比之下,剂量延长会增强辐射效应的反向剂量延长效应(IDPEs)尚未得到充分认识,也未得到全面综述。在此,我们综述了关于低线性能量传递(LET)辐射的IDPEs的现有知识。据我们所知,自1952年以来,已有157篇生物学、流行病学或临床论文报道了在接受外部或内部低LET辐射(光子(X射线、γ射线)、β射线、电子、质子或氦离子)后出现的IDPEs。低LET辐射的IDPEs已在无细胞大分子(DNA、蛋白质或脂质)的生化变化、细菌和酵母中的DNA损伤反应、DNA损伤、细胞遗传学变化、人、啮齿动物或牛源哺乳动物细胞培养中的肿瘤转化和细胞死亡、家蚕中的诱变、细胞遗传学变化、癌症(实体瘤和白血病)的诱导以及非癌症效应(雄性不育、白内障和循环系统疾病)、非人类哺乳动物(啮齿动物、兔子、狗和猪)中的肿瘤失活和存活,以及人类中的癌症和非癌症效应(皮肤变化和循环系统疾病)等方面得到描述。与越来越多关于IDPEs表现的现象学证据形成对比的是,关于其机制基础的知识有限,但提出的机制涉及细胞周期依赖性再敏化和低剂量超辐射敏感性。这些都需要继续研究,以进一步发展机制,并评估科学证据对辐射防护的影响(例如,就剂量率有效性因子而言)。