Suppr超能文献

结合机器学习,可疑物和非目标物筛查揭示了微污染物及其转化产物在污泥中的可解释归宿。

Integrating machine learning, suspect and nontarget screening reveal the interpretable fates of micropollutants and their transformation products in sludge.

作者信息

Cai Siying, Zhang Xinyu, Sun Tong, Zhou Hao, Zhang Yu, Yang Peng, Wang Dongsheng, Zhang Jianbo, Hu Chengzhi, Zhang Weijun

机构信息

School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China.

School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, Jilin 132012, China.

出版信息

J Hazard Mater. 2025 Apr 5;487:137183. doi: 10.1016/j.jhazmat.2025.137183. Epub 2025 Jan 11.

Abstract

Activated sludge enriches vast amounts of micropollutants (MPs) when wastewater is treated, posing potential environmental risks. While standard methods typically focus on target analysis of known compounds, the identity, structure, and concentration of transformation products (TPs) of MPs remain less understood. Here, we employed a novel approach that integrates machine learning for the quantification of nontarget TPs with advanced target, suspect, and nontarget screening strategies. 39 parent chemicals and 286 TPs were identified, with the majority being pharmaceuticals, followed by phthalate acid ester and alkylphenols. To quantify TPs without reference standards, we applied machine learning to forecast the relative response factors (RRFs) relied on their physicochemical characteristics. The random forest regression model showed great performance, with prediction errors of RRFs ranging from 0.03 to 0.35. The mean concentrations for parents and TPs were 1.32 -19.83 and 6.35 -9.94 μg/g dw, respectively. Further risk-based prioritization integrating environmental exposure and ToxPi scoring ranked the identified 182 compounds, with three parents and one TP recognized as high priorities for management. N-demethylation and N-oxidated TPs are generally less toxic than their parents. These findings are expected to facilitate MPs and their TPs investigations for reliable environmental monitoring and risk assessment across different sludge treatment processes.

摘要

在处理废水时,活性污泥会富集大量的微污染物(MPs),从而带来潜在的环境风险。虽然标准方法通常侧重于对已知化合物进行目标分析,但MPs转化产物(TPs)的身份、结构和浓度仍不太清楚。在此,我们采用了一种新颖的方法,将机器学习与先进的目标、可疑和非目标筛选策略相结合,用于定量分析非目标TPs。我们鉴定出了39种母体化学物质和286种TPs,其中大多数是药物,其次是邻苯二甲酸酯和烷基酚。为了在没有参考标准的情况下定量TPs,我们应用机器学习根据其理化特性预测相对响应因子(RRFs)。随机森林回归模型表现出色,RRFs的预测误差在0.03至0.35之间。母体化学物质和TPs的平均浓度分别为1.32 - 19.83和6.35 - 9.94μg/g干重。进一步基于风险的优先级排序,结合环境暴露和ToxPi评分,对鉴定出的182种化合物进行了排名,其中三种母体化学物质和一种TP被认定为管理的高优先级。N-去甲基化和N-氧化的TPs通常比其母体毒性小。这些发现有望促进对MPs及其TPs的研究,以便在不同的污泥处理过程中进行可靠的环境监测和风险评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验