Cui Xinhua, Wang Yang, Liu Jiajia, Liu Ziyan, Zhao Meng, Yu Wanlu, Zhu Mingmei, Xu Hongyue, Lu Baochun, Peng Danping, Shi Jinyang, Liao Ning, Niu Sijia, Shen Jiayi, Qiu Jiazhang, Yu Lu
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China.
Food Funct. 2025 Feb 3;16(3):1041-1059. doi: 10.1039/d4fo02810d.
serovar Typhimurium (STM) causes severe colitis, necessitating the development of effective drugs. Here, the dockings of limonin with the STM T3SS-1 virulence factor SopB or SopE2 showed strong binding activity and was verified by CETSA and DARTS assays . Limonin inhibited the enzyme activities and expression of SopB and SopE2 . Furthermore, we found that limonin treatment significantly reduced the number of STM colony-forming units (CFUs) in infected HeLa and Raw264.7 cells, which resulted in a decrease in the rate of membrane ruffling mediated by SopB-regulated Arf6/Cyth2/Arf1-, RAC1-, and CDC42-driven Arp2/3-dependent actin polymerization and the SopE2-regulated CDC42/Arp2/3 pathway, and the confocal laser scanning microscopy analysis revealed that limonin treatment repressed the recruitment of the -containing vacuole (SCV) biomarkers LC3, Rab7, GAL8 and NDP52. Furthermore, limonin treatment ameliorated STM-induced colitis by reducing the disease activity index (DAI), colon shortening, and MPO and EPO activities; mitigating the severity of . Typhimurium-induced colitis damage; and influencing the levels of inflammatory factors (IL-1β, IL-6, IL-10, TNF-α and IFN-γ) while increasing the levels of colonic epithelial barrier and tight junction genes (, , , and ). A gut microbiota analysis revealed that limonin treatment influenced α- and β-diversity of the flora and increased the counts of the beneficial bacteria and to regulate gut microbiota dysbiosis. Finally, colon SCFA measurements revealed that limonin treatment significantly increased acetate, butyrate, propionate and valerate concentrations. Thus, this study is an important reference for the anti-STM effects of limonin on induced colitis.
鼠伤寒血清型沙门氏菌(STM)可引发严重的结肠炎,因此需要研发有效的药物。在此,柠檬苦素与STM三型分泌系统1(T3SS-1)毒力因子SopB或SopE2的对接显示出强烈的结合活性,并通过热蛋白质组分析(CETSA)和药物亲和反应靶标稳定性(DARTS)分析得到验证。柠檬苦素抑制了SopB和SopE2的酶活性及表达。此外,我们发现柠檬苦素处理显著减少了感染的HeLa细胞和Raw264.7细胞中STM的菌落形成单位(CFU)数量,这导致由SopB调节的Arf6/Cyth2/Arf1、RAC1和CDC42驱动的Arp2/3依赖性肌动蛋白聚合以及SopE2调节的CDC42/Arp2/3途径介导的膜 ruffling速率降低,共聚焦激光扫描显微镜分析显示柠檬苦素处理抑制了含沙门氏菌空泡(SCV)生物标志物LC3、Rab7、GAL8和NDP52的募集。此外,柠檬苦素处理通过降低疾病活动指数(DAI)、结肠缩短以及髓过氧化物酶(MPO)和环氧合酶(EPO)活性,改善了STM诱导的结肠炎;减轻了鼠伤寒沙门氏菌诱导的结肠炎损伤的严重程度;并影响炎症因子(IL-1β、IL-6、IL-10、TNF-α和IFN-γ)的水平,同时增加结肠上皮屏障和紧密连接基因(、、、和)的水平。肠道微生物群分析表明,柠檬苦素处理影响了菌群的α和β多样性,并增加了有益细菌和的数量,以调节肠道微生物群失调。最后,结肠短链脂肪酸(SCFA)测量显示,柠檬苦素处理显著增加了乙酸盐、丁酸盐、丙酸盐和戊酸盐的浓度。因此,本研究为柠檬苦素对诱导性结肠炎的抗STM作用提供了重要参考。