Suppr超能文献

评估新冠疫情防护措施及工作人员缺勤对放疗实践的影响:一项模拟研究。

Evaluating the impact of COVID-19 protection measures and staff absence on radiotherapy practice: A simulation study.

作者信息

Jambor Elisabeth, Viana Joe, Reuter-Oppermann Melanie, Müller-Polyzou Ralf

机构信息

University of Kaiserslautern-Landau (RPTU), Kaiserslautern, Germany.

Department of Accounting and Operations Management, BI Norwegian Business School, Oslo, Norway.

出版信息

PLoS One. 2025 Jan 16;20(1):e0314190. doi: 10.1371/journal.pone.0314190. eCollection 2025.

Abstract

BACKGROUND

Radiotherapy practice for cancer treatment is resource-intensive and demands optimised processes for patient throughput while guaranteeing the quality and safety of the therapy. With the COVID-19 pandemic, ad-hoc changes in the operation of radiotherapy centres became necessary to protect patients and staff. This simulation study aimed to quantify the impact of designated COVID-19 protection measures and pandemic-related staff absence on patient waiting times and throughput. The approach also enables analysis of protective measures and process adjustments for future business disruptions.

METHODS

A discrete event simulation model of a stand-alone radiotherapy centre was developed and used to analyse changes in patient flow when implementing COVID-19 protection measures and experiencing staff absence. The simulation results support business continuity planning and decision-making in radiotherapy. In total, twenty-one scenarios in three categories were analysed. Category 1 scenarios investigated the effect of healthcare staff and equipment shortfalls. Category 2 scenarios simulated the impact of additional COVID-19 protection measures at low COVID-19 incidence rates, while category 3 scenarios evaluated the changes at high incidence rates.

RESULTS

The simulation results suggested increased patient waiting times when staff is absent. Most scenarios of the three categories behave similarly despite increased patient waiting times due to COVID-19 protection measures in categories 2 and 3. The most significant increase in patient waiting times occurs when only two radiation therapists are available. The absence of a linear accelerator for cancer treatment also leads to increased waiting times. Scenarios where one administrator is absent show the longest average and maximum waiting times for low COVID-19 incidence rates. COVID-19 protection measures reduce patient throughput. In all scenarios, with reduced patient throughput, follow-up radiation appointments were affected.

CONCLUSIONS

The simulated scenario results suggest that appropriate staffing of the radiotherapy centre during a pandemic crisis is essential and that staff absence can lead to prolonged patient waiting times and reduced throughput with severe continuity of care consequences. The simulation model demonstrated that centre administrators are a bottleneck if they must perform COVID-19 protection measures in addition to their administrative duties. The effect could be mitigated by outsourcing COVID-19 protection tasks to external service providers or other centre staff.

摘要

背景

癌症治疗的放射治疗实践资源密集,需要优化流程以提高患者 throughput,同时保证治疗的质量和安全性。随着 COVID-19 大流行,放射治疗中心的运营需要临时改变,以保护患者和工作人员。本模拟研究旨在量化指定的 COVID-19 保护措施以及与大流行相关的工作人员缺勤对患者等待时间和 throughput 的影响。该方法还能够分析针对未来业务中断的保护措施和流程调整。

方法

开发了一个独立放射治疗中心的离散事件模拟模型,并用于分析实施 COVID-19 保护措施和工作人员缺勤时患者流程的变化。模拟结果支持放射治疗中的业务连续性规划和决策。总共分析了三类中的 21 种情况。第 1 类情况研究了医护人员和设备短缺的影响。第 2 类情况模拟了在 COVID-19 低发病率时额外的 COVID-19 保护措施的影响,而第 3 类情况评估了高发病率时的变化。

结果

模拟结果表明工作人员缺勤时患者等待时间增加。尽管第 2 类和第 3 类中的 COVID-19 保护措施导致患者等待时间增加,但三类中的大多数情况表现相似。当只有两名放射治疗师可用时,患者等待时间增加最为显著。缺少癌症治疗用的直线加速器也会导致等待时间增加。在 COVID-19 低发病率时,一名管理人员缺勤的情况显示平均和最长等待时间最长。COVID-19 保护措施降低了患者 throughput。在所有情况下,随着患者 throughput 的降低,后续放射治疗预约受到影响。

结论

模拟情况结果表明,在大流行危机期间,放射治疗中心配备适当人员至关重要,工作人员缺勤会导致患者等待时间延长和 throughput 降低,并对护理连续性产生严重影响。模拟模型表明,如果中心管理人员除行政职责外还必须执行 COVID-19 保护措施,他们会成为瓶颈。将 COVID-19 保护任务外包给外部服务提供商或其他中心工作人员可以减轻这种影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d22b/11737702/c1bb84001ed3/pone.0314190.g001.jpg

相似文献

1
Evaluating the impact of COVID-19 protection measures and staff absence on radiotherapy practice: A simulation study.
PLoS One. 2025 Jan 16;20(1):e0314190. doi: 10.1371/journal.pone.0314190. eCollection 2025.
2
Developing an efficient scheduling template of a chemotherapy treatment unit: A case study.
Australas Med J. 2011;4(10):575-88. doi: 10.4066/AMJ.2011.837. Epub 2011 Oct 31.
4
Implementing an artificial intelligence command centre in the NHS: a mixed-methods study.
Health Soc Care Deliv Res. 2024 Oct;12(41):1-108. doi: 10.3310/TATM3277.
8
Improving workflow control in radiotherapy using discrete-event simulation.
BMC Med Inform Decis Mak. 2019 Oct 24;19(1):199. doi: 10.1186/s12911-019-0910-0.
9
Influence of the pandemic dissemination of COVID-19 on radiotherapy practice: A flash survey in Germany, Austria and Switzerland.
PLoS One. 2020 May 21;15(5):e0233330. doi: 10.1371/journal.pone.0233330. eCollection 2020.
10
Computer modeling of patient flow in a pediatric emergency department using discrete event simulation.
Pediatr Emerg Care. 2007 Jan;23(1):5-10. doi: 10.1097/PEC.0b013e31802c611e.

本文引用的文献

1
Simulation as a tool to model potential workflow enhancements in radiotherapy treatment pathways - A systematic review.
J Appl Clin Med Phys. 2023 Oct;24(10):e14132. doi: 10.1002/acm2.14132. Epub 2023 Sep 3.
2
Outcomes of managing healthcare services using the Theory of Constraints: A systematic review.
Health Syst (Basingstoke). 2020 Oct 6;11(1):1-16. doi: 10.1080/20476965.2020.1813056. eCollection 2022.
3
Identifying user assistance systems for radiotherapy to increase efficiency and help saving lives.
Health Syst (Basingstoke). 2020 Aug 30;10(4):318-336. doi: 10.1080/20476965.2020.1803148. eCollection 2021.
4
European radiation oncology after one year of COVID-19 pandemic.
Clin Transl Radiat Oncol. 2021 May;28:141-143. doi: 10.1016/j.ctro.2021.03.011. Epub 2021 Apr 16.
5
COVID-19 and cancer.
Science. 2020 Jun 19;368(6497):1290. doi: 10.1126/science.abd3377.
6
Meeting the challenges imposed by COVID-19: Guidance document by the ESTRO Radiation TherapisT Committee (RTTC).
Tech Innov Patient Support Radiat Oncol. 2020 Sep;15:6-10. doi: 10.1016/j.tipsro.2020.05.003. Epub 2020 May 22.
7
Influence of the pandemic dissemination of COVID-19 on radiotherapy practice: A flash survey in Germany, Austria and Switzerland.
PLoS One. 2020 May 21;15(5):e0233330. doi: 10.1371/journal.pone.0233330. eCollection 2020.
8
Reporting Quality of Discrete Event Simulations in Healthcare-Results From a Generic Reporting Checklist.
Value Health. 2020 Apr;23(4):506-514. doi: 10.1016/j.jval.2020.01.005. Epub 2020 Feb 26.
9
COVID-19: impact on cancer workforce and delivery of care.
Lancet Oncol. 2020 May;21(5):633. doi: 10.1016/S1470-2045(20)30240-0. Epub 2020 Apr 21.
10
Risk of COVID-19 for patients with cancer.
Lancet Oncol. 2020 Apr;21(4):e180. doi: 10.1016/S1470-2045(20)30150-9. Epub 2020 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验