Jin Ruipeng, Li Rui, Ma Ming-Li, Chen Da-Yu, Zhang Jian-Yu, Xie Zheng-He, Ding Li-Feng, Xie Yabo, Li Jian-Rong
Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China.
Beijing Jingneng Clean Energy Co., Ltd., Beijing, 100028, P. R. China.
Small. 2025 Jan 17:e2409759. doi: 10.1002/smll.202409759.
Metal-organic frameworks (MOFs) are rigorously investigated as promising candidates for CO capture and conversion. MOF-on-MOF heterostructures integrate bolstered charger carrier separation with the intrinsic advantages of MOF components, exhibiting immense potential to substantially escalate the efficiency of photocatalytic CO reduction (CORR). However, the structural and compositional complexity poses significant challenges to the controllable development of these heterostructures. Herein, a conventional MOF-on-MOF nanocomposite is readily optimized from a type II heterojunction to a state-of-the-art cascade Z-scheme configuration via the encapsulation of Pt nanoparticles (Pt NPs), establishing synergistic MOF-MOF and metal-MOF heterojunctions with reinforced built-in electric field. A cascade electron flow is thus propelled, vigorously separating the photogenerated charge carriers and profoundly extending their lifetimes. Collectively, the photocatalytic activity of the cascade Z-scheme is drastically promoted, exhibiting a nearly quintuple enhancement in the CO production rate over the original type II heterostructure. Moreover, the anti-sintering capacity of the developed nanocomposite is unveiled, elucidating its simultaneously improved activity and stability. These findings present unprecedented regulation over the configuration of a MOF-on-MOF heterojunction, substantially enriching the fundamental understanding and rational design strategies of composite materials.
金属有机框架材料(MOFs)作为有前景的二氧化碳捕获与转化候选材料受到了深入研究。MOF-on-MOF异质结构将增强的电荷载流子分离与MOF组分的固有优势相结合,在大幅提高光催化二氧化碳还原(CORR)效率方面展现出巨大潜力。然而,其结构和组成的复杂性给这些异质结构的可控开发带来了重大挑战。在此,通过封装铂纳米颗粒(Pt NPs),一种传统的MOF-on-MOF纳米复合材料很容易从II型异质结优化为先进的级联Z型结构,建立起具有增强内建电场的协同MOF-MOF和金属-MOF异质结。由此推动了级联电子流,有力地分离光生电荷载流子并显著延长其寿命。总体而言,级联Z型结构的光催化活性得到大幅提升,与原始II型异质结构相比,一氧化碳生成速率提高了近五倍。此外,所开发的纳米复合材料的抗烧结能力也得以揭示,阐明了其同时提高的活性和稳定性。这些发现为MOF-on-MOF异质结的结构调控带来了前所未有的进展,极大地丰富了对复合材料的基本理解和合理设计策略。