Suppr超能文献

利用玉米(Zea mays L.)内生真菌构建对渗透胁迫的耐受性。

Construing the resilience to osmotic stress using endophytic fungus in maize (Zea mays L.).

作者信息

Byregowda Roopashree, Prasad S Rajendra, Prasannakumar M K

机构信息

Department of Seed Science and Technology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra (GKVK), Bengaluru, India.

Department of Plant Pathology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra (GKVK), Bengaluru, India.

出版信息

Plant Mol Biol. 2025 Jan 17;115(1):22. doi: 10.1007/s11103-025-01550-4.

Abstract

In a wake of shifting climatic scenarios, plants are frequently forced to undergo a spectrum of abiotic and biotic stresses at various stages of growth, many of which have a detrimental effect on production and survival. Naturally, microbial consortia partner up to boost plant growth and constitute a diversified ecosystem against abiotic stresses. Despite this, little is known pertaining to the interplay between endophytic microbes which release phytohormones and stimulate plant development in stressed environments. In a lab study, we demonstrated that an endophyte isolated from the Kargil region of India, a Fusarium equiseti strain K23-FE, colonizes the maize hybrid MAH 14 - 5, promoting its growth and conferring polyethylene glycol (PEG)-induced osmotic stress tolerance. To unravel the molecular mechanism, maize seedlings inoculated with endophyte were subjected to comparative transcriptomic analysis. In response to osmotic stress, genes associated with metabolic, photosynthesis, secondary metabolites, and terpene biosynthesis pathways were highly upregulated in endophyte enriched maize seedlings. Further, in a greenhouse experiment, maize plants inoculated with fungal endophyte showed higher relative leaf water content, chlorophyll content, and antioxidant enzyme activity such as polyphenol oxidase (PPO) and catalase (CAT) under 50% field capacity conditions. Osmoprotectant like proline were higher and malondialdehyde content was reduced in colonized plants. This study set as proof of concept to demonstrate that endophytes adapted to adverse environments can efficiently tweak non-host plant responses to abiotic stresses such as water deficit stress via physiological and molecular pathways, offering a huge opportunity for their deployment in sustainable agriculture.

摘要

在气候变化的背景下,植物在生长的各个阶段经常被迫遭受一系列非生物和生物胁迫,其中许多胁迫对产量和生存都有不利影响。自然地,微生物群落协同作用以促进植物生长,并构成一个抵御非生物胁迫的多样化生态系统。尽管如此,关于在胁迫环境中释放植物激素并刺激植物发育的内生微生物之间的相互作用,我们所知甚少。在一项实验室研究中,我们证明了从印度列城地区分离出的一种内生真菌,即木贼镰刀菌菌株K23-FE,能定殖于玉米杂交种MAH 14 - 5,促进其生长并赋予其对聚乙二醇(PEG)诱导的渗透胁迫的耐受性。为了揭示其分子机制,对接种了内生真菌的玉米幼苗进行了比较转录组分析。响应渗透胁迫,在富含内生真菌的玉米幼苗中,与代谢、光合作用、次生代谢产物和萜类生物合成途径相关的基因高度上调。此外,在温室实验中,接种真菌内生菌的玉米植株在50%田间持水量条件下表现出较高的相对叶片含水量、叶绿素含量以及抗氧化酶活性,如多酚氧化酶(PPO)和过氧化氢酶(CAT)。定殖植株中脯氨酸等渗透保护剂含量较高,丙二醛含量降低。这项研究作为概念验证,表明适应恶劣环境的内生菌可以通过生理和分子途径有效地调节非寄主植物对非生物胁迫(如水亏缺胁迫)的反应,为其在可持续农业中的应用提供了巨大机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验