Suppr超能文献

基于Cox回归模型的因素,以分析纤维支气管镜支气管肺泡灌洗对重症肺炎患儿的预后影响。

Factors based on Cox regression modeling to analyze the prognostic impact of fiberoptic bronchoscopic bronchoalveolar lavage on children with severe pneumonia.

作者信息

Ma Wenyu, Wang Yi, Dang Qinghua, Zhang Xianxia

机构信息

Department of Critical Care 1, Xi'an International Medical Center Hospital No. 777 Xitai Road, Chang'an District, Xi'an 710000, Shaanxi, China.

Department of Critical Care 2, Wuwei Cancer Hospital No. 16 Xuanwu Street, Liangzhou District, Wuwei 730000, Gansu, China.

出版信息

Am J Transl Res. 2024 Dec 15;16(12):7645-7655. doi: 10.62347/OGZD3131. eCollection 2024.

Abstract

OBJECTIVE

This study aimed to identify factors influencing the prognosis of children with severe pneumonia (SP) after fiberoptic bronchoscopic bronchoalveolar lavage (BAL).

METHODS

The clinical data of 155 children with SP treated with fiberoptic bronchoscopic BAL at Xi'an International Medical Center Hospital between January 2022 and January 2024 were retrospectively analyzed. Children were categorized into the survival group (n = 122) and the death group (n = 33) according to their clinical outcomes within 28 days after treatment. General patient data and the initial laboratory results after admission were collected. Univariate and multivariate Cox regression analyses were performed to identify independent predictors of 28-day prognosis. The predictive ability of each index was evaluated using the receiver operating characteristic (ROC) curve analysis and the Delong test. The relationship between each index and the prognosis of children with SP was analyzed using the Kaplan-Meier curve.

RESULTS

The death group had significantly younger patients, longer pneumonia course, shorter pregnancy cycle, and higher levels of procalcitonin (PCT), white blood cell count (WBC), C-protein reaction (CPR), and systemic immune-inflammation index (SII) compared to the survival group (P<0.05). Cox regression analysis identified age (HR = 0.959, P = 0.014), pneumonia course (HR = 2.270, P<0.001), pregnancy cycle (HR = 2.736, P = 0.015), PCT (HR = 2.728, P = 0.001), WBC (HR = 1.283, P = 0.001), and SII (HR = 1.009, P<0.001) as independent predictors of 28-day mortality in children with SP. Among these, pneumonia course, PCT, and SII demonstrated higher predictive efficacy in adverse outcomes, with areas under the ROC curve (AUC) of 0.827, 0.822, and 0.868, respectively, outperforming age, pregnancy cycle, and WBC (P<0.05). Kaplan-Meier survival curves showed that patients with older age, shorter pneumonia course, full-term birth, and those with lower WBC, PCT, and SII levels had significantly higher survival rates compared to their counterparts (P<0.05).

CONCLUSION

Age, pneumonia course, pregnancy cycle, WBC, PCT, and SII were independent predictors of survival in children with SP after fiberoptic bronchoscopic BAL, among which pneumonia course, PCT, and SII showed a higher predictive efficacy for the prognosis of children with SP.

摘要

目的

本研究旨在确定影响重症肺炎(SP)患儿经纤维支气管镜支气管肺泡灌洗(BAL)术后预后的因素。

方法

回顾性分析2022年1月至2024年1月在西安国际医学中心医院接受纤维支气管镜BAL治疗的155例SP患儿的临床资料。根据治疗后28天内的临床结局,将患儿分为存活组(n = 122)和死亡组(n = 33)。收集患者的一般资料和入院后的初始实验室检查结果。进行单因素和多因素Cox回归分析,以确定28天预后的独立预测因素。使用受试者工作特征(ROC)曲线分析和德龙检验评估各指标的预测能力。采用Kaplan-Meier曲线分析各指标与SP患儿预后的关系。

结果

与存活组相比,死亡组患儿年龄显著更小、肺炎病程更长、孕周更短,降钙素原(PCT)、白细胞计数(WBC)、C反应蛋白(CPR)和全身免疫炎症指数(SII)水平更高(P<0.05)。Cox回归分析确定年龄(HR = 0.959,P = 0.014)、肺炎病程(HR = 2.270,P<0.001)、孕周(HR = 2.736,P = 0.015)、PCT(HR = 2.728,P = 0.001)、WBC(HR = 1.283,P = 0.001)和SII(HR = 1.009,P<0.001)是SP患儿28天死亡率的独立预测因素。其中,肺炎病程、PCT和SII对不良结局的预测效能更高,ROC曲线下面积(AUC)分别为0.827、0.822和0.868,优于年龄、孕周和WBC(P<0.05)。Kaplan-Meier生存曲线显示,年龄较大、肺炎病程较短、足月出生以及WBC、PCT和SII水平较低的患者生存率明显高于相应患者(P<0.05)。

结论

年龄、肺炎病程、孕周、WBC、PCT和SII是纤维支气管镜BAL术后SP患儿生存的独立预测因素,其中肺炎病程、PCT和SII对SP患儿的预后显示出更高的预测效能。

相似文献

2
[Analysis of clinical features and risk factors of necrotizing pneumonia in children].
Beijing Da Xue Xue Bao Yi Xue Ban. 2022 Jun 18;54(3):541-547. doi: 10.19723/j.issn.1671-167X.2022.03.021.
4
[Predictive value of neutrophil to lymphocyte ratio on 28-day mortality of patients with severe pneumonia].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2019 Jul;31(7):827-831. doi: 10.3760/cma.j.issn.2095-4352.2019.07.006.
5
[Relationship between serum procalcitonin level and severity and prognosis in patients with traumatic brain injury in plateau areas].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024 Jan;36(1):56-61. doi: 10.3760/cma.j.cn121430-20230425-00317.
8
[The prognostic value of preoperative peripheral blood inflammatory biomarkers for intrahepatic cholangiocarcinoma after radical resection].
Zhonghua Zhong Liu Za Zhi. 2022 Nov 23;44(11):1194-1201. doi: 10.3760/cma.j.cn112152-20210324-00265.
9
[Predictive value of whole blood cell derived inflammatory markers in combination with NT-proBNP on the prognosis of patients with chronic heart failure].
Zhonghua Xin Xue Guan Bing Za Zhi. 2025 Feb 24;53(2):143-150. doi: 10.3760/cma.j.cn112148-20241211-00774.
10
Ratio of procalcitonin/Simpson's dominance index predicted the short-term prognosis of patients with severe bacterial pneumonia.
Front Cell Infect Microbiol. 2023 Jul 3;13:1175747. doi: 10.3389/fcimb.2023.1175747. eCollection 2023.

本文引用的文献

3
A comparative study of general and severe mycoplasma pneumoniae pneumonia in children.
BMC Infect Dis. 2024 Apr 26;24(1):449. doi: 10.1186/s12879-024-09340-x.
5
[Meta-analysis and trial sequential analysis of Tanreqing Injection in treatment of severe pneumonia in elderly].
Zhongguo Zhong Yao Za Zhi. 2024 Feb;49(4):1091-1101. doi: 10.19540/j.cnki.cjcmm.20231025.501.
6
Adenovirus and co-infection as a risk factor for severe community-acquired pneumonia in children.
Front Pediatr. 2024 Jan 31;12:1337786. doi: 10.3389/fped.2024.1337786. eCollection 2024.
7
Biomarkers: Are They Useful in Severe Community-Acquired Pneumonia?
Semin Respir Crit Care Med. 2024 Apr;45(2):200-206. doi: 10.1055/s-0043-1777771. Epub 2024 Jan 9.
9
Advancements in the Management of Severe Community-Acquired Pneumonia: A Comprehensive Narrative Review.
Cureus. 2023 Oct 12;15(10):e46893. doi: 10.7759/cureus.46893. eCollection 2023 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验