Ngoc Son Do, Chihaia Viorel, Thi Xuan Huynh Nguyen
Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
Vietnam National University Ho Chi Minh City Linh Trung Ward Ho Chi Minh City Vietnam.
RSC Adv. 2025 Jan 16;15(2):1425-1437. doi: 10.1039/d4ra07861f. eCollection 2025 Jan 9.
Carbon dioxide capture is a vital approach for mitigating air pollution and global warming. In this context, metal-organic frameworks are promising candidates. Particularly, MIL-88A (M), where the metal nodes (M) are connected to fumarate linkers in its structure, has demonstrated significant potential for CO capture. However, to date, no studies have investigated the effects of metal substitutions in MIL-88A (M) on CO capture performance. Therefore, the present work aims to address this gap by examining metal substitutions with M = Al, Sc, Ti, V, and Ga. To quantitatively understand the CO capture capabilities of MIL-88A (M), we employed grand canonical Monte Carlo simulations to study both excess and total CO uptakes. Our findings indicated that MIL-88A with Al and Ga as metal nodes exhibited the best performance for CO capture. Furthermore, the adsorption energy of the CO molecule in MIL-88A (M), obtained through van der Waals-corrected density functional theory calculations, indicated the following order of preference for CO adsorption: Ti > V > Sc > Ga ≈ Al. The adsorption strength of the CO molecule in MIL-88A (Ga and Al) was the weakest among the considered metals. However, MIL-88A (Al) exhibited the largest specific surface area and hence offered the best excess and total gravimetric uptakes, while MIL-88A (Ga), together with MIL-88A (Al), had the largest pore volumes. Therefore, they exhibited the best excess and total volumetric uptakes. The electronic density of states revealed that the interaction between the 3σ , 2π , and 1π peaks of the CO molecule and the O and C p and p orbitals of MIL-88A (M) was found to be significant for understanding the physical interaction between CO and MIL-88A (M). Thus, our findings provide valuable insights for the rational design of metal-organic frameworks for gas capture and storage applications.
二氧化碳捕获是减轻空气污染和全球变暖的重要途径。在此背景下,金属有机框架是很有前景的候选材料。特别是MIL-88A(M),其结构中的金属节点(M)与富马酸酯连接体相连,已显示出在捕获CO方面的巨大潜力。然而,迄今为止,尚无研究调查MIL-88A(M)中金属取代对CO捕获性能的影响。因此,本工作旨在通过研究用Al、Sc、Ti、V和Ga取代M来填补这一空白。为了定量了解MIL-88A(M)的CO捕获能力,我们采用巨正则蒙特卡罗模拟来研究过量和总CO吸收量。我们的研究结果表明,以Al和Ga作为金属节点的MIL-88A在CO捕获方面表现出最佳性能。此外,通过范德华校正密度泛函理论计算得到的MIL-88A(M)中CO分子的吸附能表明,CO吸附的优先顺序如下:Ti > V > Sc > Ga ≈ Al。在考虑的金属中,MIL-88A(Ga和Al)中CO分子的吸附强度最弱。然而,MIL-88A(Al)具有最大的比表面积,因此具有最佳的过量和总重量吸收量,而MIL-88A(Ga)与MIL-88A(Al)一起具有最大的孔体积。因此,它们具有最佳的过量和总体积吸收量。态密度表明,CO分子的3σ、2π和1π峰与MIL-88A(M)的O和C p和p轨道之间的相互作用对于理解CO与MIL-88A(M)之间的物理相互作用很重要。因此,我们的研究结果为合理设计用于气体捕获和存储应用的金属有机框架提供了有价值的见解。