Kręcijasz Remigiusz B, Malinčík Juraj, Mathew Simon, Štacko Peter, Šolomek Tomáš
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands.
Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland.
J Am Chem Soc. 2025 Mar 26;147(12):10231-10237. doi: 10.1021/jacs.4c15818. Epub 2025 Jan 17.
We present the synthesis, structural analysis, and remarkable reactivity of the first carbon nanohoop that fully incorporates ferrocene in the macrocyclic backbone. The high strain imposed on the ferrocene by the curved nanohoop structure enables unprecedented photochemical reactivity of this otherwise photochemically inert metallocene complex. Visible light activation triggers a ring-opening of the nanohoop structure, fully dissociating the Fe-cyclopentadienyl bonds in the presence of 1,10-phenanthroline. This process uncages Fe ions captured in the form of [Fe(phen)] complex in high chemical yield and can operate efficiently in a water-rich solvent with green light excitation. The measured quantum yields of [Fe(phen)] formation show that embedding ferrocene into a strained nanohoop boosts its photoreactivity by 3 orders of magnitude compared to an unstrained ferrocene macrocycle or ferrocene itself. Our data suggest that the dissociation occurs by intercepting the photoexcited triplet state of the nanohoop by a nucleophilic solvent or external ligand. The strategy portrayed in this work proposes that new, tunable reactivity of analogous metallamacrocycles can be achieved with spatial and temporal control, which will aid and abet the development of responsive materials for metal ion delivery and supramolecular, organometallic, or polymer chemistry.
我们展示了首个在大环主链中完全并入二茂铁的碳纳米环的合成、结构分析及显著反应活性。弯曲的纳米环结构施加于二茂铁的高应变使得这种原本光化学惰性的金属茂配合物具有前所未有的光化学反应活性。可见光激活引发纳米环结构的开环,在1,10-菲咯啉存在下使铁-环戊二烯基键完全解离。该过程以高化学产率释放以[Fe(phen)]配合物形式捕获的铁离子,并且在富含水的溶剂中通过绿光激发可高效运行。所测得的[Fe(phen)]形成的量子产率表明,与未受应变的二茂铁大环或二茂铁本身相比,将二茂铁嵌入受应变的纳米环可使其光反应活性提高3个数量级。我们的数据表明,解离是通过亲核溶剂或外部配体拦截纳米环的光激发三重态而发生的。这项工作中描述的策略表明,通过空间和时间控制可以实现类似金属大环化合物的新型可调反应活性,这将有助于金属离子递送以及超分子、有机金属或聚合物化学的响应材料的开发。