Zhang Jin-Mei, Yuan Guan-Yin, Zou Yi
College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China.
Nat Prod Rep. 2025 Feb 19;42(2):298-323. doi: 10.1039/d4np00050a.
Covering: up to August 2024Macrolides, the core skeletons of numerous marketed drugs and bioactive natural products, have garnered considerable scientific interest owing to their structural diversity and broad spectrum of pharmaceutical activities. The formation of intramolecular ester bonds is a critical biocatalytic step in constructing macrolide skeletons. Here, we summarised enzymatic ester bond formation strategies in fungal polyketide (PK)-type, nonribosomal peptide (NRP)-type, and PK-NRP hybrid-type macrolides. In PK-type macrolides, ester bond formation is commonly catalysed by a -acting thioesterase (TE) or a -acting TE domain during the product release process. In NRP-type and PK-NRP hybrid-type macrolides, the ester bond is usually introduced through condensation (C) domain-catalysed esterification during the elongation or product release step. Although the TE and C domains share similarities in their catalytic mechanism, using hydroxyl groups as nucleophiles in an intramolecular nucleophilic attack, they differ in terms of the hydroxyl origin, the timing of ester bond formation, and domain location. Furthermore, some TE domains are utilized as chemoenzymatic catalysts to construct macrolides with different ring sizes. A comparison of ester bond formation between fungi and bacteria is also discussed. Exploring the biosynthetic pathways of fungal macrolides, elucidating the diverse strategies employed in the formation of ester bonds, and understanding the application of enzymes/domains in chemoenzymatic synthesis hold promise for the discovery of new bioactive macrolides in the future.
截至2024年8月
大环内酯类化合物是众多上市药物和生物活性天然产物的核心骨架,因其结构多样性和广泛的药物活性而引起了相当大的科学关注。分子内酯键的形成是构建大环内酯骨架的关键生物催化步骤。在此,我们总结了真菌聚酮化合物(PK)型、非核糖体肽(NRP)型和PK-NRP杂合型大环内酯中酶促酯键形成策略。在PK型大环内酯中,酯键形成通常在产物释放过程中由α-作用硫酯酶(TE)或β-作用TE结构域催化。在NRP型和PK-NRP杂合型大环内酯中,酯键通常在延伸或产物释放步骤中通过缩合(C)结构域催化的酯化引入。尽管TE和C结构域在催化机制上有相似之处,即在分子内亲核攻击中使用羟基作为亲核试剂,但它们在羟基来源、酯键形成时机和结构域位置方面存在差异。此外,一些TE结构域被用作化学酶催化剂来构建不同环大小的大环内酯。还讨论了真菌和细菌之间酯键形成的比较。探索真菌大环内酯的生物合成途径,阐明酯键形成中采用的多种策略,以及了解酶/结构域在化学酶合成中的应用,有望在未来发现新的生物活性大环内酯。