文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种基于口腔微生物群的深度神经网络模型用于胃癌风险分层和预后预测。

An oral microbiota-based deep neural network model for risk stratification and prognosis prediction in gastric cancer.

作者信息

Gao Xue-Feng, Zhang Can-Gui, Huang Kun, Zhao Xiao-Lin, Liu Ying-Qiao, Wang Zi-Kai, Ren Rong-Rong, Mai Geng-Hui, Yang Ke-Ren, Chen Ye

机构信息

Integrative Microecology Clinical Center, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, The Clinical Innovation & Research Center, Shenzhen Key Laboratory of Viral Oncology, Department of Clinical Nutrition, Shenzhen Hospital, Southern Medical University, Shenzhen, China.

Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.

出版信息

J Oral Microbiol. 2025 Jan 17;17(1):2451921. doi: 10.1080/20002297.2025.2451921. eCollection 2025.


DOI:10.1080/20002297.2025.2451921
PMID:39840394
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11749243/
Abstract

BACKGROUND: This study aims to develop an oral microbiota-based model for gastric cancer (GC) risk stratification and prognosis prediction. METHODS: Oral microbial markers for GC prognosis and risk stratification were identified from 99 GC patients, and their predictive potential was validated on an external dataset of 111 GC patients. The identified bacterial markers were used to construct a Deep Neural Network (DNN) model, a Random Forest (RF) model, and a Support Vector Machine (SVM) model for predicting GC prognosis. RESULTS: GC patients with <3 years of survival showed a higher abundance of and diminished abundances of and Moryella than those who survived ≥3 years. The Boruta algorithm unearthed Leptotrichia as another significant marker for GC prognosis. Consequently, a DNN model was constructed based on the relative abundances of these bacteria, predicting 3-year and 5-year survival in GC patients with Area Under Curve of 0.814 and 0.912, respectively. Notably, the DNN model outperformed the TNM staging system, SVM and RF models. The prognostic value of these bacterial markers was further reinforced by external validation. CONCLUSION: The oral microbiota-based DNN model may advance GC prognosis. The biological functions of these oral bacterial markers warrant further investigation from the perspective of GC progression.

摘要

背景:本研究旨在开发一种基于口腔微生物群的模型,用于胃癌(GC)风险分层和预后预测。 方法:从99例GC患者中鉴定出用于GC预后和风险分层的口腔微生物标志物,并在111例GC患者的外部数据集中验证其预测潜力。所鉴定的细菌标志物用于构建预测GC预后的深度神经网络(DNN)模型、随机森林(RF)模型和支持向量机(SVM)模型。 结果:生存时间<3年的GC患者中,[未提及具体细菌名称]的丰度较高,而[未提及具体细菌名称]和莫雷拉菌的丰度较低,比生存时间≥3年的患者低。博鲁塔算法挖掘出纤毛菌属作为GC预后的另一个重要标志物。因此,基于这些细菌的相对丰度构建了一个DNN模型,预测GC患者3年和5年生存率的曲线下面积分别为0.814和0.912。值得注意的是,DNN模型优于TNM分期系统、SVM模型和RF模型。外部验证进一步强化了这些细菌标志物的预后价值。 结论:基于口腔微生物群的DNN模型可能改善GC的预后。这些口腔细菌标志物的生物学功能值得从GC进展的角度进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91a9/11749243/cf447da4054c/ZJOM_A_2451921_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91a9/11749243/f8ee91345b6e/ZJOM_A_2451921_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91a9/11749243/bdd212ae5351/ZJOM_A_2451921_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91a9/11749243/4c1044504940/ZJOM_A_2451921_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91a9/11749243/fadfee8eb73c/ZJOM_A_2451921_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91a9/11749243/cf447da4054c/ZJOM_A_2451921_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91a9/11749243/f8ee91345b6e/ZJOM_A_2451921_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91a9/11749243/bdd212ae5351/ZJOM_A_2451921_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91a9/11749243/4c1044504940/ZJOM_A_2451921_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91a9/11749243/fadfee8eb73c/ZJOM_A_2451921_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91a9/11749243/cf447da4054c/ZJOM_A_2451921_F0005_OC.jpg

相似文献

[1]
An oral microbiota-based deep neural network model for risk stratification and prognosis prediction in gastric cancer.

J Oral Microbiol. 2025-1-17

[2]
Development and validation of a prognostic prediction model for elderly gastric cancer patients based on oxidative stress biochemical markers.

BMC Cancer. 2025-2-1

[3]
Immunomarker Support Vector Machine Classifier for Prediction of Gastric Cancer Survival and Adjuvant Chemotherapeutic Benefit.

Clin Cancer Res. 2018-7-24

[4]
Developing and comparing deep learning and machine learning algorithms for osteoporosis risk prediction.

Front Artif Intell. 2024-6-11

[5]
Machine Learning-Based Model for the Prognosis of Postoperative Gastric Cancer.

Cancer Manag Res. 2022-1-7

[6]
Application of machine learning algorithm in predicting distant metastasis of T1 gastric cancer.

Sci Rep. 2023-4-7

[7]
Deep learning-based subtyping of gastric cancer histology predicts clinical outcome: a multi-institutional retrospective study.

Gastric Cancer. 2023-9

[8]
Applying artificial intelligence using routine clinical data for preoperative diagnosis and prognosis evaluation of gastric cancer.

Oncol Lett. 2023-10-4

[9]
Intratumoral and fecal microbiota reveals microbial markers associated with gastric carcinogenesis.

Front Cell Infect Microbiol. 2024-9-17

[10]
Dual-layer spectral-detector CT for predicting microsatellite instability status and prognosis in locally advanced gastric cancer.

Insights Imaging. 2023-9-19

引用本文的文献

[1]
A review on computer-aided diagnostic system to classify the disorders of the gastrointestinal tract.

Eur J Med Res. 2025-7-26

[2]
Unveiling the microbial influence: bacteria's dual role in tumor metastasis.

Front Oncol. 2025-3-14

本文引用的文献

[1]
Stomach microbiota in gastric cancer development and clinical implications.

Gut. 2024-11-11

[2]
Robustness of cancer microbiome signals over a broad range of methodological variation.

Oncogene. 2024-4

[3]
Streptococcus anginosus promotes gastric inflammation, atrophy, and tumorigenesis in mice.

Cell. 2024-2-15

[4]
Machine learning for microbiologists.

Nat Rev Microbiol. 2024-4

[5]
Intratumoral is a novel microbial marker for favorable clinical outcomes in head and neck cancer patients.

MedComm (2020). 2023-8-27

[6]
Helicobacter pylori, Homologous-Recombination Genes, and Gastric Cancer. Reply.

N Engl J Med. 2023-7-27

[7]
Gastric cancer treatment: recent progress and future perspectives.

J Hematol Oncol. 2023-5-27

[8]
Dissecting the genetic heterogeneity of gastric cancer.

EBioMedicine. 2023-6

[9]
Application of artificial intelligence for improving early detection and prediction of therapeutic outcomes for gastric cancer in the era of precision oncology.

Semin Cancer Biol. 2023-8

[10]
From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment.

Cell. 2023-4-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索