Suppr超能文献

借助比色纸传感器实现人工智能驱动的移动土壤pH值分类,助力可持续农业。

AI enabled, mobile soil pH classification with colorimetric paper sensors for sustainable agriculture.

作者信息

Ferreira da Silva Ademir, Ohta Ricardo Luis, Tirapu Azpiroz Jaione, Esteves Ferreira Matheus, Marçal Daniel Vitor, Botelho André, Coppola Tulio, Melo de Oliveira Allysson Flavio, Bettarello Murilo, Schneider Lauren, Vilaça Rodrigo, Abdool Noorunisha, Junior Vanderlei, Furlaneti Wellington, Malanga Pedro Augusto, Steiner Mathias

机构信息

IBM Research, Rio de Janeiro, Brazil.

IBM Research, São Paulo, Brazil.

出版信息

PLoS One. 2025 Jan 22;20(1):e0317739. doi: 10.1371/journal.pone.0317739. eCollection 2025.

Abstract

For optimizing production yield while limiting negative environmental impact, sustainable agriculture benefits from real-time, on-the-spot chemical analysis of soil at low cost. Colorimetric paper sensors are ideal candidates, however, their automated readout and analysis in the field is needed. Using mobile technology for paper sensor readout could, in principle, enable the application of machine-learning models for transforming colorimetric data into threshold-based classes that represent chemical concentration. Such a classification method could provide a basis for soil management decisions where high-resolution lab analysis is not required or available. In tropical regions, where reliable soil data is difficult to acquire, this approach would be particularly useful. Here, we report a mobile chemical analysis system based on colorimetric paper sensors that operates under tropical field conditions. A standard smartphone equipped with a dedicated software application automatically classifies the paper sensor results into three classes-low, medium, or high soil pH-which provides a basis for soil correction. The classification task is performed by a machine-learning model which was trained on the colorimetric pH indicators deployed on the paper sensor. By mapping topsoil pH on a test site with an area of 9 hectares, the mobile system was benchmarked in the field against standard soil lab analysis. The mobile system has correctly classified soil pH in 97% of test cases, while reducing the analysis turnaround time from days (soil lab) to minutes (mobile). By performing on-the-spot analyses using the mobile system in the field, a 9-fold increase of spatial resolution reveals pH-variations not detectable in the standard compound mapping mode of lab analysis. We discuss how the mobile analysis can support smallholder farmers and enable sustainable agriculture practices by avoiding excessive soil correction. The system can be extended to perform multi-parameter chemical tests of soil nutrients for applications in environmental monitoring at marginal manufacturing cost.

摘要

为了在优化产量的同时限制对环境的负面影响,可持续农业受益于低成本的土壤实时现场化学分析。比色纸传感器是理想之选,然而,需要在现场对其进行自动读数和分析。原则上,使用移动技术读取纸传感器的数据可以应用机器学习模型,将比色数据转换为代表化学浓度的基于阈值的类别。这种分类方法可以为不需要或无法进行高分辨率实验室分析的土壤管理决策提供依据。在难以获取可靠土壤数据的热带地区,这种方法将特别有用。在此,我们报告一种基于比色纸传感器的移动化学分析系统,该系统可在热带田间条件下运行。配备专用软件应用程序的标准智能手机会自动将纸传感器的结果分为三类——低、中、高土壤pH值,这为土壤校正提供了依据。分类任务由一个机器学习模型执行,该模型是根据部署在纸传感器上的比色pH指示剂进行训练的。通过在一个面积为9公顷的测试场地绘制表层土壤pH值,该移动系统在田间与标准土壤实验室分析进行了对比测试。该移动系统在97%的测试案例中正确分类了土壤pH值,同时将分析周转时间从几天(土壤实验室)缩短至几分钟(移动系统)。通过在田间使用移动系统进行现场分析,空间分辨率提高了9倍,揭示了实验室分析的标准复合测绘模式中无法检测到的pH值变化。我们讨论了移动分析如何通过避免过度土壤校正来支持小农户并实现可持续农业实践。该系统可以扩展以执行土壤养分的多参数化学测试,用于边际制造成本下的环境监测应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f16e/11753690/615d83c9d6b5/pone.0317739.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验