Jian Muwei, Xu Wenjing, Nie ChangQun, Li Shuo, Yang Songwen, Li Xiaoguang
School of Information Science and Technology, Linyi University, Linyi, People's Republic of China.
School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan, People's Republic of China.
Biomed Phys Eng Express. 2025 Jan 22;11(2). doi: 10.1088/2057-1976/ada9f0.
In fundus images, precisely segmenting retinal blood vessels is important for diagnosing eye-related conditions, such as diabetic retinopathy and hypertensive retinopathy or other eye-related disorders. In this work, we propose an enhanced U-shaped network with dual-attention, named DAU-Net, divided into encoder and decoder parts. Wherein, we replace the traditional convolutional layers with ConvNeXt Block and SnakeConv Block to strengthen its recognition ability for different forms of blood vessels while lightweight the model. Additionally, we designed two efficient attention modules, namely Local-Global Attention (LGA) and Cross-Fusion Attention (CFA). Specifically, LGA conducts attention calculations on the features extracted by the encoder to accentuate vessel-related characteristics while suppressing irrelevant background information; CFA addresses potential information loss during feature extraction by globally modeling pixel interactions between encoder and decoder features. Comprehensive experiments in terms of public datasets DRIVE, CHASE_DB1, and STARE demonstrate that DAU-Net obtains excellent segmentation results on all three datasets. The results show an AUC of 0.9818, ACC of 0.8299, and F1 score of 0.9585 on DRIVE; 0.9894, 0.8499, and 0.9700 on CHASE_DB1; and 0.9908, 0.8620, and 0.9712 on STARE, respectively. These results strongly demonstrate the effectiveness of DAU-Net in retinal vessel segmentation, highlighting its potential for practical clinical use.
在眼底图像中,精确分割视网膜血管对于诊断与眼睛相关的疾病,如糖尿病视网膜病变、高血压视网膜病变或其他与眼睛相关的疾病至关重要。在这项工作中,我们提出了一种具有双重注意力的增强型U形网络,名为DAU-Net,它分为编码器和解码器两部分。其中,我们用ConvNeXt Block和SnakeConv Block取代了传统的卷积层,以增强其对不同形式血管的识别能力,同时使模型轻量化。此外,我们设计了两个高效的注意力模块,即局部-全局注意力(LGA)和交叉融合注意力(CFA)。具体来说,LGA对编码器提取的特征进行注意力计算,以突出与血管相关的特征,同时抑制无关的背景信息;CFA通过对编码器和解码器特征之间的像素交互进行全局建模,解决特征提取过程中潜在的信息损失问题。在公共数据集DRIVE、CHASE_DB1和STARE上进行的综合实验表明,DAU-Net在所有三个数据集上都取得了优异的分割结果。结果显示,在DRIVE数据集上的AUC为0.9818、ACC为0.8299、F1分数为0.9585;在CHASE_DB1数据集上的AUC为0.9894、ACC为0.8499、F1分数为0.9700;在STARE数据集上的AUC为0.9908、ACC为0.8620、F1分数为0.9712。这些结果有力地证明了DAU-Net在视网膜血管分割中的有效性,突出了其在实际临床应用中的潜力。