Merlin R
The Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA.
PNAS Nexus. 2025 Jan 8;4(1):pgaf002. doi: 10.1093/pnasnexus/pgaf002. eCollection 2025 Jan.
The direct, ultrafast excitation of polar phonons with electromagnetic radiation is a potent strategy for controlling the properties of a wide range of materials, particularly in the context of influencing their magnetic behavior. Here, we show that, contrary to common perception, the origin of phonon-induced magnetic activity does not stem from the Maxwellian fields resulting from the motion of the ions themselves or the effect their motion exerts on the electron subsystem. Through the mechanism of electron-phonon coupling, a coherent state of circularly polarized phonons generates substantial non-Maxwellian fields that disrupt time-reversal symmetry, effectively emulating the behavior of authentic magnetic fields. Notably, the effective fields can reach magnitudes as high as 100 T, surpassing by a factor of the Maxwellian fields resulting from the inverse Faraday effect; is the fine-structure constant. Because the light-induced nonreciprocal fields depend on the square of the phonon displacements, the chirality the photons transfer to the ions plays no role in magnetophononics.
利用电磁辐射直接、超快地激发极性声子是控制多种材料特性的有效策略,特别是在影响其磁行为的背景下。在此,我们表明,与通常的认知相反,声子诱导磁活性的起源并非源于离子自身运动产生的麦克斯韦场,也不是其运动对电子子系统施加的效应。通过电子 - 声子耦合机制,圆偏振声子的相干态会产生大量破坏时间反演对称性的非麦克斯韦场,有效地模拟了真实磁场的行为。值得注意的是,有效场强度可达100 T之高,比由逆法拉第效应产生的麦克斯韦场高出 倍; 为精细结构常数。由于光诱导的非互易场取决于声子位移的平方,光子传递给离子的手性在磁声子学中不起作用。