Suppr超能文献

磁声子学与手性声子的误称

Magnetophononics and the chiral phonon misnomer.

作者信息

Merlin R

机构信息

The Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA.

出版信息

PNAS Nexus. 2025 Jan 8;4(1):pgaf002. doi: 10.1093/pnasnexus/pgaf002. eCollection 2025 Jan.

Abstract

The direct, ultrafast excitation of polar phonons with electromagnetic radiation is a potent strategy for controlling the properties of a wide range of materials, particularly in the context of influencing their magnetic behavior. Here, we show that, contrary to common perception, the origin of phonon-induced magnetic activity does not stem from the Maxwellian fields resulting from the motion of the ions themselves or the effect their motion exerts on the electron subsystem. Through the mechanism of electron-phonon coupling, a coherent state of circularly polarized phonons generates substantial non-Maxwellian fields that disrupt time-reversal symmetry, effectively emulating the behavior of authentic magnetic fields. Notably, the effective fields can reach magnitudes as high as 100 T, surpassing by a factor of the Maxwellian fields resulting from the inverse Faraday effect; is the fine-structure constant. Because the light-induced nonreciprocal fields depend on the square of the phonon displacements, the chirality the photons transfer to the ions plays no role in magnetophononics.

摘要

利用电磁辐射直接、超快地激发极性声子是控制多种材料特性的有效策略,特别是在影响其磁行为的背景下。在此,我们表明,与通常的认知相反,声子诱导磁活性的起源并非源于离子自身运动产生的麦克斯韦场,也不是其运动对电子子系统施加的效应。通过电子 - 声子耦合机制,圆偏振声子的相干态会产生大量破坏时间反演对称性的非麦克斯韦场,有效地模拟了真实磁场的行为。值得注意的是,有效场强度可达100 T之高,比由逆法拉第效应产生的麦克斯韦场高出 倍; 为精细结构常数。由于光诱导的非互易场取决于声子位移的平方,光子传递给离子的手性在磁声子学中不起作用。

相似文献

1
Magnetophononics and the chiral phonon misnomer.
PNAS Nexus. 2025 Jan 8;4(1):pgaf002. doi: 10.1093/pnasnexus/pgaf002. eCollection 2025 Jan.
2
Large effective magnetic fields from chiral phonons in rare-earth halides.
Science. 2023 Nov 10;382(6671):698-702. doi: 10.1126/science.adi9601. Epub 2023 Nov 9.
3
Phonon Inverse Faraday Effect from Electron-Phonon Coupling.
Phys Rev Lett. 2024 Dec 31;133(26):266702. doi: 10.1103/PhysRevLett.133.266702.
4
Vibrational Dichroism of Chiral Valley Phonons.
Nano Lett. 2023 Aug 23;23(16):7463-7469. doi: 10.1021/acs.nanolett.3c01904. Epub 2023 Aug 14.
5
Phonon-Induced Geometric Chirality.
ACS Nano. 2024 Oct 29;18(43):29550-29557. doi: 10.1021/acsnano.4c05978. Epub 2024 Oct 18.
7
Ultrafast Polarization-Resolved Phonon Dynamics in Monolayer Semiconductors.
Nano Lett. 2024 Aug 28;24(34):10592-10598. doi: 10.1021/acs.nanolett.4c02787. Epub 2024 Aug 13.
8
Chiral Phonons and Giant Magneto-Optical Effect in CrBr 2D Magnet.
Adv Mater. 2021 Sep;33(36):e2101618. doi: 10.1002/adma.202101618. Epub 2021 Jul 24.
9
Cavity magnomechanics.
Sci Adv. 2016 Mar 18;2(3):e1501286. doi: 10.1126/sciadv.1501286. eCollection 2016 Mar.
10
Chiral Phonons: Prediction, Verification, and Application.
Nano Lett. 2024 Apr 17;24(15):4311-4318. doi: 10.1021/acs.nanolett.4c00606. Epub 2024 Apr 8.

引用本文的文献

1
Origin of Large Effective Phonon Magnetic Moments in Monolayer MoS.
ACS Nano. 2025 Mar 25;19(11):11241-11248. doi: 10.1021/acsnano.4c18906. Epub 2025 Mar 13.

本文引用的文献

1
Terahertz electric-field-driven dynamical multiferroicity in SrTiO.
Nature. 2024 Apr;628(8008):534-539. doi: 10.1038/s41586-024-07175-9. Epub 2024 Apr 10.
2
Large effective magnetic fields from chiral phonons in rare-earth halides.
Science. 2023 Nov 10;382(6671):698-702. doi: 10.1126/science.adi9601. Epub 2023 Nov 9.
3
Chiral phonons in quartz probed by X-rays.
Nature. 2023 Jun;618(7967):946-950. doi: 10.1038/s41586-023-06016-5. Epub 2023 Jun 7.
4
Magnetic Control of Soft Chiral Phonons in PbTe.
Phys Rev Lett. 2022 Feb 18;128(7):075901. doi: 10.1103/PhysRevLett.128.075901.
5
Phonon Magnetic Moment from Electronic Topological Magnetization.
Phys Rev Lett. 2021 Oct 29;127(18):186403. doi: 10.1103/PhysRevLett.127.186403.
6
Ultrafast control of magnetic interactions via light-driven phonons.
Nat Mater. 2021 May;20(5):607-611. doi: 10.1038/s41563-021-00922-7. Epub 2021 Feb 8.
7
A Large Effective Phonon Magnetic Moment in a Dirac Semimetal.
Nano Lett. 2020 Aug 12;20(8):5991-5996. doi: 10.1021/acs.nanolett.0c01983. Epub 2020 Jul 10.
8
9
Observation of chiral phonons.
Science. 2018 Feb 2;359(6375):579-582. doi: 10.1126/science.aar2711. Epub 2018 Feb 1.
10
Chiral phonons at high-symmetry points in monolayer hexagonal lattices.
Phys Rev Lett. 2015 Sep 11;115(11):115502. doi: 10.1103/PhysRevLett.115.115502.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验