Chen Yu-Qiao, Zhu Ying-Jie, Wang Zhong-Yi, Yu Han-Ping, Xiong Zhi-Chao
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
ACS Appl Mater Interfaces. 2025 Feb 5;17(5):8158-8170. doi: 10.1021/acsami.4c17864. Epub 2025 Jan 23.
Solar energy-driven steam generation is a renewable, energy-efficient technology that can alleviate the global clean water shortage through seawater desalination. However, the contradiction between resistance to salinity accretion and maintaining high water evaporation properties remains a challenging bottleneck. Herein, we have developed a biomimetic multiscale-ordered hydrogel-based solar water evaporator for efficient seawater desalination. The as-prepared solar water evaporator consists of highly ordered ultralong hydroxyapatite (HAP) nanowires as a supporting backbone and heat insulator, MXene as a sunlight absorber, and hydrophilic hyaluronic acid methacryloyl (HAMA) as an interfacial bonding agent, and a modifier to reduce the water evaporation enthalpy. The MXene/ultralong HAP nanowires/HAMA (MHH) photothermal hydrogel evaporator with the multiscale-ordered hierarchical structure mimics the fish-gill structure. The highly ordered alignment of ultralong HAP nanowires is realized at multiple scales, from the nanoscale to the microscale to the macroscale and from 1D to 2D to 3D in the as-prepared photothermal hydrogel evaporator. The high-performance MHH photothermal hydrogel water evaporator exhibits high efficiency of photothermal conversion, low water evaporation enthalpy, excellent heat management capability, and high solar water evaporation performance. The water evaporation enthalpy decreases from 2431 J g (pure water) to 1113 J g using the MHH photothermal hydrogel evaporator. As a result, the high-performance MHH hydrogel water evaporator can realize a high water evaporation rate of 6.278 kg m h under one sun illumination (1 kW m). Moreover, the as-prepared MHH hydrogel evaporator is able to achieve a water evaporation rate of 4.931 kg m h using the real seawater sample, exhibiting excellent salt-rejecting performance. It is expected that the as-prepared MHH hydrogel evaporator has promising applications in high-performance seawater desalination and wastewater purification using the sustainable solar energy.
太阳能驱动的蒸汽产生是一种可再生、高效节能的技术,可通过海水淡化缓解全球清洁水短缺问题。然而,耐盐性增加与保持高水蒸发性能之间的矛盾仍然是一个具有挑战性的瓶颈。在此,我们开发了一种基于仿生多尺度有序水凝胶的太阳能水蒸发器,用于高效海水淡化。所制备的太阳能水蒸发器由高度有序的超长羟基磷灰石(HAP)纳米线作为支撑骨架和隔热材料、MXene作为阳光吸收剂、亲水性甲基丙烯酰化透明质酸(HAMA)作为界面粘合剂以及降低水蒸发焓的改性剂组成。具有多尺度有序层次结构的MXene/超长HAP纳米线/HAMA(MHH)光热水凝胶蒸发器模仿了鱼鳃结构。在制备的光热水凝胶蒸发器中,超长HAP纳米线在从纳米尺度到微米尺度再到宏观尺度以及从一维到二维再到三维的多个尺度上实现了高度有序排列。高性能的MHH光热水凝胶水蒸发器表现出高效的光热转换效率、低水蒸发焓、优异的热管理能力和高太阳能水蒸发性能。使用MHH光热水凝胶蒸发器时,水蒸发焓从2431 J/g(纯水)降至1113 J/g。因此,高性能的MHH水凝胶水蒸发器在一个太阳光照(1 kW/m²)下可实现6.278 kg/m²·h的高水蒸发速率。此外,所制备的MHH水凝胶蒸发器使用真实海水样品时能够实现4.931 kg/m²·h的水蒸发速率,表现出优异的拒盐性能。预计所制备的MHH水凝胶蒸发器在利用可持续太阳能进行高性能海水淡化和废水净化方面具有广阔的应用前景。