Ichihara Yuri, Okawa Maho, Minegishi Minori, Oizumi Hiroaki, Yamamoto Masahiro, Ohbuchi Katsuya, Miyamoto Yuki, Yamauchi Junji
Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
Tsumura Research Laboratories, Tsumura & Co., Ibaraki 200-1192, Japan.
Medicines (Basel). 2025 Jan 16;12(1):2. doi: 10.3390/medicines12010002.
In the central nervous system (CNS), proper interaction between neuronal and glial cells is crucial for the development of mature nervous tissue. Hypomyelinating leukodystrophies (HLDs) are a group of genetic CNS disorders characterized by hypomyelination and/or demyelination. In these conditions, genetic mutations disrupt the biological functions of oligodendroglial cells, which are responsible for wrapping neuronal axons with myelin sheaths. Among these, an amino acid mutation of the ubiquitin-fold modifier conjugating enzyme 1 (UFC1) is associated with HLD14-related disease, characterized by hypomyelination and delayed myelination in the brain. UFC1 is a critical component of the UFMylation system, functioning similarly to E2-conjugating enzymes in the ubiquitin-dependent protein degradation system.
We describe how a missense mutation in UFC1 (p.Arg23Gln) leads to the aggregation of UFC1 primarily in lysosomes in FBD-102b cells, which are undergoing oligodendroglial cell differentiation.
Cells with mutated UFC1 exhibit reduced Akt kinase phosphorylation and reduced expression of differentiation and myelination marker proteins. Consistently, these cells exhibit impaired morphological differentiation with a reduced ability to extend widespread membranes. Interestingly, hesperetin, a citrus flavonoid with known neuroprotective properties, was found to restore differentiation abilities in cells with the UFC1 mutation.
These findings indicate that the HLD14-related mutation in UFC1 causes its lysosomal aggregation, impairing its morphological differentiation. Furthermore, the study highlights potential therapeutic insights into the pathological molecular and cellular mechanisms underlying HLD14 and suggests hesperetin as a promising candidate for treatment.
在中枢神经系统(CNS)中,神经元细胞与神经胶质细胞之间的适当相互作用对于成熟神经组织的发育至关重要。低髓鞘形成性脑白质营养不良(HLDs)是一组遗传性中枢神经系统疾病,其特征为髓鞘形成不足和/或脱髓鞘。在这些疾病中,基因突变破坏了少突胶质细胞的生物学功能,少突胶质细胞负责用髓鞘包裹神经元轴突。其中,泛素折叠修饰缀合酶1(UFC1)的氨基酸突变与HLD14相关疾病有关,其特征为脑内髓鞘形成不足和髓鞘形成延迟。UFC1是泛素样修饰系统的关键组成部分,其功能类似于泛素依赖性蛋白质降解系统中的E2缀合酶。
我们描述了UFC1中的一个错义突变(p.Arg23Gln)如何导致UFC1主要在正在进行少突胶质细胞分化的FBD-102b细胞的溶酶体中聚集。
携带突变UFC1的细胞表现出Akt激酶磷酸化减少以及分化和髓鞘形成标记蛋白的表达降低。一致地,这些细胞表现出形态分化受损,扩展广泛细胞膜的能力降低。有趣的是,橙皮素是一种具有已知神经保护特性的柑橘类黄酮,被发现可恢复携带UFC1突变的细胞的分化能力。
这些发现表明,UFC1中与HLD14相关的突变导致其溶酶体聚集,损害其形态分化。此外,该研究突出了对HLD14潜在病理分子和细胞机制的潜在治疗见解,并表明橙皮素是一种有前景的治疗候选物。