Bennett Seth A, Cobos Samantha N, Fisher Raven M A, Son Elizaveta, Frederic Rania, Segal Rianna, Yousuf Huda, Chan Kaitlyn, Dansu David K, Torrente Mariana P
Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY 11210, USA.
Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA.
J Fungi (Basel). 2025 Jan 14;11(1):58. doi: 10.3390/jof11010058.
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are incurable neurodegenerative disorders sharing pathological and genetic features, including mutations in the gene. FUS is an RNA-binding protein that mislocalizes to the cytoplasm and aggregates in ALS/FTD. In a yeast model, FUS proteinopathy is connected to changes in the epigenome, including reductions in the levels of H3S10ph, H3K14ac, and H3K56ac. Exploiting the same model, we reveal novel connections between FUS aggregation and epigenetic dysregulation. We show that the histone-modifying enzymes Ipl1 and Rtt109-responsible for installing H3S10ph and H3K56ac-are excluded from the nucleus in the context of FUS proteinopathy. Furthermore, we found that Ipl1 colocalizes with FUS, but does not bind it directly. We identified Nop1 and Rrp5, a histone methyltransferase and rRNA biogenesis protein, respectively, as FUS binding partners involved in the growth suppression phenotype connected to FUS proteinopathy. We propose that the nuclear exclusion of Ipl1 through indirect interaction with FUS drives the dysregulation of H3S10ph as well as H3K14ac via crosstalk. We found that the knockdown of Nop1 interferes with these processes. In a parallel mechanism, Rtt109 mislocalization results in reduced levels of H3K56ac. Our results highlight the contribution of epigenetic mechanisms to ALS/FTD and identify novel targets for possible therapeutic intervention.
肌萎缩侧索硬化症(ALS)和额颞叶痴呆(FTD)是无法治愈的神经退行性疾病,具有共同的病理和遗传特征,包括该基因的突变。FUS是一种RNA结合蛋白,在ALS/FTD中会错误定位于细胞质并聚集。在酵母模型中,FUS蛋白病变与表观基因组的变化有关,包括H3S10ph、H3K14ac和H3K56ac水平的降低。利用同一模型,我们揭示了FUS聚集与表观遗传失调之间的新联系。我们发现,负责安装H3S10ph和H3K56ac的组蛋白修饰酶Ipl1和Rtt109在FUS蛋白病变的情况下被排除在细胞核之外。此外,我们发现Ipl1与FUS共定位,但不直接结合。我们分别确定了组蛋白甲基转移酶Nop1和rRNA生物发生蛋白Rrp5作为与FUS蛋白病变相关的生长抑制表型的FUS结合伙伴。我们提出,Ipl1通过与FUS的间接相互作用而被核排除,通过串扰驱动H3S10ph以及H3K14ac的失调。我们发现敲低Nop1会干扰这些过程。在一种平行机制中,Rtt109的错误定位导致H3K56ac水平降低。我们的结果突出了表观遗传机制对ALS/FTD的贡献,并确定了可能的治疗干预的新靶点。