Suppr超能文献

质子微束(pMBRT)放射治疗:在RayStation治疗计划系统中对蒙特卡罗剂量计算的实验验证

Proton minibeam (pMBRT) radiation therapy: experimental validation of Monte Carlo dose calculation in the RayStation TPS.

作者信息

Lin Yuting, Traneus Erik, Wang Aoxiang, Li Wangyao, Gao Hao

机构信息

Department of Radiation Oncology, University of Kansas Medical Center, KS, United States of America.

RaySearch Laboratories AB, Stockholm, Sweden.

出版信息

Phys Med Biol. 2025 Feb 13;70(4). doi: 10.1088/1361-6560/adae4f.

Abstract

Proton minibeam radiation therapy (pMBRT) is a spatially fractionated radiation therapy modality that uses a multi-slit collimator (MSC) to create submillimeter slit openings for spatial dose modulation. The pMBRT dose profile is characterized by highly heterogeneous dose in the plane perpendicular to the beam and rapidly changing depth dose profiles. Dose measurements are typically benchmarked against in-house Monte Carlo (MC) simulation tools. For preclinical and clinical translation, a treatment planning system (TPS) capable of accurately predicting pMBRT doses in tissue and accessible on a commercial platform is essential. This study focuses on the beam modeling and verification of pMBRT using the RayStation TPS, a critical step in advancing its clinical implementation.The pMBRT system was implemented in RayStation for the IBA Proteus®ONE single-room compact proton machine. The RayStation pMBRT model is an extension of the clinical beam model, allowing pMBRT dose calculations through the MSC using the existing clinical beam model. Adjustable MSC parameters include air gap, slit thickness, slit pitch, number of slits, slits direction and slit thickness. The pMBRT TPS was validated experimentally against measurements using six different collimators with various slit widths (0.4-1.4 mm) and center-to-center slit distances (2.8-4.0 mm). Each collimator comprised five non-divergent slits. Validation involved MatriXX measurements for average dose, Gafchromic film placed at varying depths to measure lateral dose profiles, and film placed along the beam axis to measure depth-dose curves in solid water phantoms. A single 150 MeV energy layer with a 0.5 cm spot spacing was used to create a uniform radiation map across the MSC field.The comparison of average depth dose measurements with RayStation MC calculations showed a gamma passing rate better than 95% using 3 mm/3% criteria, except for the 0.4 mm slit width. After adjusting the slit width by 40-60m to account for machining uncertainties, the gamma passing rate exceeded 95% under the same criteria. For the peaks and valleys of the percentage depth doses, agreement between RayStation and film measurements was above 90% using 2 mm/5% criteria, except in the high linear energy transfer region. Lateral profile comparisons at depths of 2, 6, and 10 cm demonstrated over 90% agreement for all curves using 0.2 mm/5% criteria.The pMBRT beam model for the Proteus®ONE-based system has been successfully implemented in RayStation TPS, with its initial accuracy validated experimentally. Further measurements, including additional energies and Spread Out Bragg Peaks, are required to complete the clinical commissioning process.

摘要

质子微束放射治疗(pMBRT)是一种空间分割放射治疗方式,它使用多叶准直器(MSC)创建亚毫米级的狭缝开口以进行空间剂量调制。pMBRT剂量分布的特点是在垂直于射束的平面内剂量高度不均匀,且深度剂量分布快速变化。剂量测量通常以内部蒙特卡罗(MC)模拟工具为基准。对于临床前和临床转化而言,一个能够在商业平台上使用且能准确预测组织中pMBRT剂量的治疗计划系统(TPS)至关重要。本研究聚焦于使用RayStation TPS对pMBRT进行射束建模和验证,这是推进其临床应用的关键一步。

pMBRT系统在RayStation中针对IBA Proteus®ONE单室紧凑型质子治疗机进行了实现。RayStation pMBRT模型是临床射束模型的扩展,允许通过MSC使用现有的临床射束模型进行pMBRT剂量计算。可调节的MSC参数包括气隙、狭缝厚度、狭缝间距、狭缝数量、狭缝方向和狭缝厚度。

pMBRT TPS通过使用六种不同的准直器进行实验验证,这些准直器具有不同的狭缝宽度(0.4 - 1.4毫米)和中心到中心的狭缝距离(2.8 - 4.0毫米)。每个准直器包含五个非发散狭缝。验证包括使用MatriXX测量平均剂量、在不同深度放置Gafchromic胶片以测量横向剂量分布,以及在固体水模体中沿射束轴放置胶片以测量深度剂量曲线。使用单个150 MeV能量层,光斑间距为0.5厘米,以在MSC射野上创建均匀的辐射图。

将平均深度剂量测量结果与RayStation MC计算结果进行比较,结果表明,除了0.4毫米狭缝宽度外,使用3毫米/3%标准时,伽马通过率优于95%。在考虑加工不确定性将狭缝宽度调整40 - 60微米后,在相同标准下伽马通过率超过95%。对于深度剂量百分比的峰谷,使用2毫米/5%标准时,RayStation与胶片测量结果之间的一致性在90%以上,除了在高线性能量传递区域。在2、6和10厘米深度处的横向分布比较表明,使用0.2毫米/5%标准时,所有曲线的一致性超过90%。

基于Proteus®ONE的系统的pMBRT射束模型已成功在RayStation TPS中实现,其初始准确性已通过实验验证。还需要进一步测量,包括额外的能量和扩展布拉格峰,以完成临床调试过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验