Suppr超能文献

A critical review on arsenic and antimony adsorption and transformation on mineral facets.

作者信息

Kumar Rohit, Jing Chuanyong, Yan Li

机构信息

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

J Environ Sci (China). 2025 Jul;153:56-75. doi: 10.1016/j.jes.2024.01.016. Epub 2024 Feb 1.

Abstract

Arsenic (As) and antimony (Sb), with analogy structure, belong to VA group in the periodic table and pose a great public concern due to their potential carcinogenicity. The speciation distribution, migration and transformation, enrichment and retention, as well as bioavailability and toxicity of As and Sb are influenced by several environmental processes on mineral surfaces, including adsorption/desorption, coordination/precipitation, and oxidation/reduction. These interfacial reactions are influenced by the crystal facet of minerals with different atomic and electronic structures. This review starts with facets and examines As and Sb adsorption and transformation on mineral facets such hematite, titanium dioxide, and manganese dioxide. The main focus lies on three pressing issues that limit the understanding of the environmental fate of As and Sb: the facet-dependent intricacies of adsorption and transformation, the mechanisms underlying facet-dependent phenomena, and the impact of co-existing chemicals. We first discussed As and Sb adsorption behaviors, structures, and bonding chemistry on diverse mineral facets. Subsequently, the reactivity of various mineral facets was examined, with particular emphasis placed on their significance in the context of environmental catalysis for the oxidation of As(III) and Sb(III). Finally, the impact of co-existing cation, anion, or organic substances on the processes of adsorption and transport of As and Sb was reviewed. This comprehensive review enhances our understanding of the facet-dependent phenomena governing adsorption, transformation, and fate of contaminants. It underscores the critical role of mineral facets in dictating environmental reactions and paves the way for future research in this intriguing field.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验