Suppr超能文献

绿茶多酚表没食子儿茶素没食子酸酯与铜-血清白蛋白的相互作用

Green Tea Polyphenol Epigallocatechin Gallate Interactions with Copper-Serum Albumin.

作者信息

Fu Meiling, Zhang Liangliang, Killeen Rick, Onugwu Kenneth E, McCarrick Robert M, Hagerman Ann E

机构信息

Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA.

Institute of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China.

出版信息

Molecules. 2025 Jan 15;30(2):320. doi: 10.3390/molecules30020320.

Abstract

Epigallocatechin gallate (EGCg), an abundant phytochemical in green tea, is an antioxidant that also binds proteins and complex metals. After gastrointestinal absorption, EGCg binds to serum albumin in the hydrophobic pocket between domains IIA and IIIA and overlaps with the Sudlow I site. Serum albumin also has two metal binding sites, a high-affinity N-terminal site (NTS) site that selectively binds Cu(II), and a low-affinity, less selective multi-metal binding site (MBS). We proposed to determine whether EGCg binds or reacts with Cu(II)-serum albumin using fluorescence, UV-Visible and electron paramagnetic resonance (EPR) spectroscopy. Our results suggest that when serum albumin is loaded with Cu(II) in both sites, EGCg binds to the MBS-Cu(II) and reduces the copper to Cu(I). EGCg does not bind to or react with Cu(II) in the high-affinity NTS site. Potential consequences include changes in copper homeostasis and damage from pro-oxidative Fenton reactions.

摘要

表没食子儿茶素没食子酸酯(EGCg)是绿茶中一种丰富的植物化学物质,它是一种抗氧化剂,还能结合蛋白质和复合金属。经胃肠道吸收后,EGCg在结构域IIA和IIIA之间的疏水口袋中与血清白蛋白结合,并与Sudlow I位点重叠。血清白蛋白也有两个金属结合位点,一个是选择性结合铜(II)的高亲和力N端位点(NTS),另一个是低亲和力、选择性较低的多金属结合位点(MBS)。我们提议使用荧光、紫外可见光谱和电子顺磁共振(EPR)光谱来确定EGCg是否与铜(II)-血清白蛋白结合或发生反应。我们的结果表明,当血清白蛋白的两个位点都负载有铜(II)时,EGCg与MBS-铜(II)结合,并将铜还原为铜(I)。EGCg不与高亲和力NTS位点的铜(II)结合或发生反应。潜在后果包括铜稳态的变化以及来自促氧化芬顿反应的损伤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0651/11767587/66f430270e72/molecules-30-00320-g001.jpg

相似文献

1
Green Tea Polyphenol Epigallocatechin Gallate Interactions with Copper-Serum Albumin.
Molecules. 2025 Jan 15;30(2):320. doi: 10.3390/molecules30020320.
2
An investigation into the altered binding mode of green tea polyphenols with human serum albumin on complexation with copper.
J Biomol Struct Dyn. 2013 Oct;31(10):1191-206. doi: 10.1080/07391102.2012.729158. Epub 2012 Nov 12.
3
Effect of (-)-epigallocatechin gallate on the fibrillation of human serum albumin.
Int J Biol Macromol. 2014 Sep;70:312-9. doi: 10.1016/j.ijbiomac.2014.07.003. Epub 2014 Jul 10.
5
Influence of pH on the speciation of copper(II) in reactions with the green tea polyphenols, epigallocatechin gallate and gallic acid.
J Inorg Biochem. 2012 Jul;112(10):10-6. doi: 10.1016/j.jinorgbio.2011.12.010. Epub 2011 Dec 30.
6
Role of the flavan-3-ol and galloyl moieties in the interaction of (-)-epigallocatechin gallate with serum albumin.
J Agric Food Chem. 2014 Apr 30;62(17):3768-75. doi: 10.1021/jf500246m. Epub 2014 Apr 18.
7
Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: Potential for HIV-1 therapy.
J Allergy Clin Immunol. 2006 Dec;118(6):1369-74. doi: 10.1016/j.jaci.2006.08.016. Epub 2006 Oct 13.

本文引用的文献

1
Tannin complexation with metal ions and its implication on human health, environment and industry: An overview.
Int J Biol Macromol. 2023 Dec 31;253(Pt 7):127485. doi: 10.1016/j.ijbiomac.2023.127485. Epub 2023 Oct 18.
2
Serum albumin acted as an effective carrier to improve the stability of bioactive flavonoid.
Amino Acids. 2023 Dec;55(12):1879-1890. doi: 10.1007/s00726-023-03347-5. Epub 2023 Oct 19.
3
Tea-break with epigallocatechin gallate derivatives - Powerful polyphenols of great potential for medicine.
Eur J Med Chem. 2023 Dec 5;261:115820. doi: 10.1016/j.ejmech.2023.115820. Epub 2023 Sep 14.
4
Effect of Cu and Al on the interaction of chlorogenic acid and caffeic acid with serum albumin.
Food Chem. 2023 Jun 1;410:135406. doi: 10.1016/j.foodchem.2023.135406. Epub 2023 Jan 4.
6
Multispectroscopic and computational evaluation of the binding of flavonoids with bovine serum albumin in the presence of Cu.
Food Chem. 2022 Aug 15;385:132656. doi: 10.1016/j.foodchem.2022.132656. Epub 2022 Mar 8.
7
Bovine Serum Albumin as a Potential Carrier for the Protection of Bioactive Quercetin and Inhibition of Cu(II) Toxicity.
Chem Res Toxicol. 2022 Mar 21;35(3):529-537. doi: 10.1021/acs.chemrestox.2c00001. Epub 2022 Feb 17.
8
Interaction between olanzapine and human serum albumin and effect of metal ions, caffeine and flavonoids on the binding: A spectroscopic study.
Spectrochim Acta A Mol Biomol Spectrosc. 2021 Mar 15;249:119295. doi: 10.1016/j.saa.2020.119295. Epub 2020 Dec 8.
9
Polyphenols and their applications: An approach in food chemistry and innovation potential.
Food Chem. 2021 Feb 15;338:127535. doi: 10.1016/j.foodchem.2020.127535. Epub 2020 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验