文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Characteristics of Hydrogels as a Coating for Microneedle Transdermal Delivery Systems with Agomelatine.

作者信息

Wojtyłko Monika, Nowicka Ariadna B, Froelich Anna, Szybowicz Mirosław, Banaszek Tobiasz, Tomczak Dorota, Kuczko Wiesław, Wichniarek Radosław, Budnik Irena, Jadach Barbara, Kordyl Oliwia, Białek Antoni, Krysztofiak Julia, Osmałek Tomasz, Lamprou Dimitrios A

机构信息

3D Printing Division, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland.

Doctoral School, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland.

出版信息

Molecules. 2025 Jan 15;30(2):322. doi: 10.3390/molecules30020322.


DOI:10.3390/molecules30020322
PMID:39860192
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11767663/
Abstract

Agomelatine (AGM) is an effective antidepressant with low oral bioavailability due to intensive hepatic metabolism. Transdermal administration of agomelatine may increase its bioavailability and reduce the doses necessary for therapeutic effects. However, transdermal delivery requires crossing the barrier. For this purpose, the use of microneedles may increase the efficiency of administration. The aim of this study was to prepare an agomelatine-loaded hydrogel suitable for coating microneedles for the transdermal drug delivery of AGM. The optimized formulations were subjected to spectroscopic and rheological characterization and mechanical tests, as well as tested for release through an artificial membrane and permeation through human skin ex vivo. Both hydrogels were found to have suitable parameters for coating microneedles using the dip-coating method, including the stability of the substance at the process temperature, shear-thinning behavior, and appropriate textural parameters such as adhesion or hardness. Additionally, two formulations were tested for potential application to the skin alone because the gels showed suitable mechanical properties for the skin application. In this case, the ethanol gel was characterized by higher skin permeability and better spreadability. The information obtained in this study will allow the preparation of coated microneedles for the transdermal administration of agomelatine.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/235c9105c164/molecules-30-00322-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/0919c0823f04/molecules-30-00322-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/a51559e7f490/molecules-30-00322-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/0f436cc22102/molecules-30-00322-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/f7f847740304/molecules-30-00322-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/e6a38acf7307/molecules-30-00322-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/bd1f7fc1ea17/molecules-30-00322-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/91d20fb77fd0/molecules-30-00322-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/2de5acab9b7c/molecules-30-00322-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/fa15fa21109a/molecules-30-00322-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/95d4b1ebec43/molecules-30-00322-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/5c5d29fd26dd/molecules-30-00322-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/495fd7701ddf/molecules-30-00322-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/d1a4606cba92/molecules-30-00322-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/b5ca53b68d0b/molecules-30-00322-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/a168784714bf/molecules-30-00322-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/87d36a188b8c/molecules-30-00322-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/c683d06155fa/molecules-30-00322-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/63c810d65c23/molecules-30-00322-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/616e4c067e20/molecules-30-00322-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/b4a8d504411a/molecules-30-00322-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/235c9105c164/molecules-30-00322-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/0919c0823f04/molecules-30-00322-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/a51559e7f490/molecules-30-00322-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/0f436cc22102/molecules-30-00322-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/f7f847740304/molecules-30-00322-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/e6a38acf7307/molecules-30-00322-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/bd1f7fc1ea17/molecules-30-00322-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/91d20fb77fd0/molecules-30-00322-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/2de5acab9b7c/molecules-30-00322-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/fa15fa21109a/molecules-30-00322-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/95d4b1ebec43/molecules-30-00322-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/5c5d29fd26dd/molecules-30-00322-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/495fd7701ddf/molecules-30-00322-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/d1a4606cba92/molecules-30-00322-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/b5ca53b68d0b/molecules-30-00322-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/a168784714bf/molecules-30-00322-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/87d36a188b8c/molecules-30-00322-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/c683d06155fa/molecules-30-00322-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/63c810d65c23/molecules-30-00322-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/616e4c067e20/molecules-30-00322-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/b4a8d504411a/molecules-30-00322-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df5/11767663/235c9105c164/molecules-30-00322-g021.jpg

相似文献

[1]
Characteristics of Hydrogels as a Coating for Microneedle Transdermal Delivery Systems with Agomelatine.

Molecules. 2025-1-15

[2]
Transdermal drug delivery of rizatriptan using microneedles array patch: preparation, characterization and ex-vivo/in-vivo study.

Pharm Dev Technol. 2024-9

[3]
Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery.

J Control Release. 2018-6-9

[4]
Effect of binary combinations of solvent systems on permeability profiling of pure agomelatine across rat skin: a comparative study with statistically optimized polymeric nanoparticles.

Drug Dev Ind Pharm. 2020-5

[5]
Dissolving Microneedles Patch: A Promising Approach for Advancing Transdermal Delivery of Antischizophrenic Drug.

J Pharm Sci. 2024-10

[6]
Novel in situ forming hydrogel microneedles for transdermal drug delivery.

Drug Deliv Transl Res. 2017-2

[7]
Innovative freeze-drying technique in the fabrication of dissolving microneedle patch: Enhancing transdermal drug delivery efficiency.

Drug Deliv Transl Res. 2024-11

[8]
Advances in microneedle-based transdermal delivery for drugs and peptides.

Drug Deliv Transl Res. 2022-7

[9]
Current trends in polymer microneedle for transdermal drug delivery.

Int J Pharm. 2020-9-25

[10]
Development of Hydrogels for Microneedle-Assisted Transdermal Delivery of Naloxone for Opioid-Induced Pruritus.

J Pharm Sci. 2019-8-30

引用本文的文献

[1]
Optimization of LCD-Based 3D Printing for the Development of Clotrimazole-Coated Microneedle Systems.

Materials (Basel). 2025-3-31

本文引用的文献

[1]
Development, Optimization, and Evaluation of New Gel Formulations with Cyclodextrin Complexes and Volatile Oils with Antimicrobial Activity.

Gels. 2024-10-10

[2]
Coated Microneedle System for Delivery of Clotrimazole in Deep-Skin Mycoses.

Gels. 2024-4-15

[3]
Agomelatine: A Potential Multitarget Compound for Neurodevelopmental Disorders.

Brain Sci. 2023-4-27

[4]
Hyaluronic acid-enriched bilosomes: an approach to enhance ocular delivery of agomelatine via D-optimal design: formulation, characterization, and pharmacodynamic evaluation in rabbits.

Drug Deliv. 2022-12

[5]
Agomelatine for the treatment of generalized anxiety disorder: focus on its distinctive mechanism of action.

Ther Adv Psychopharmacol. 2022-6-30

[6]
Molecular mechanism of the skin permeation enhancing effect of ethanol: a molecular dynamics study.

RSC Adv. 2020-3-24

[7]
Parallel-Disk Viscometry of a Viscoplastic Hydrogel: Yield Stress and Other Parameters of Shear Viscosity and Wall Slip.

Gels. 2022-4-7

[8]
Nanostructured lipid carrier to overcome stratum corneum barrier for the delivery of agomelatine in rat brain; formula optimization, characterization and brain distribution study.

Int J Pharm. 2021-9-25

[9]
Brain targeting of agomelatine egg lecithin based chitosan coated nanoemulsion.

Pharm Dev Technol. 2021-4

[10]
Enhancement strategies for transdermal drug delivery systems: current trends and applications.

Drug Deliv Transl Res. 2022-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索