文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

丝素蛋白杂化系统:生物医学应用的当前进展

Fibroin-Hybrid Systems: Current Advances in Biomedical Applications.

作者信息

Maia Matheus Valentin, Egito Eryvaldo Sócrates Tabosa do, Sapin-Minet Anne, Viana Daniel Bragança, Kakkar Ashok, Soares Daniel Crístian Ferreira

机构信息

Laboratório de Bioengenharia, Universidade Federal de Itajubá, Itabira 35903-087, Minas Gerais, Brazil.

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada.

出版信息

Molecules. 2025 Jan 15;30(2):328. doi: 10.3390/molecules30020328.


DOI:10.3390/molecules30020328
PMID:39860198
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11767523/
Abstract

Fibroin, a protein extracted from silk, offers advantageous properties such as non-immunogenicity, biocompatibility, and ease of surface modification, which have been widely utilized for a variety of biomedical applications. However, in vivo studies have revealed critical challenges, including rapid enzymatic degradation and limited stability. To widen the scope of this natural biomacromolecule, the grafting of polymers onto the protein surface has been advanced as a platform to enhance protein stability and develop smart conjugates. This review article brings into focus applications of fibroin-hybrid systems prepared using chemical modification of the protein with polymers and inorganic compounds. A selection of recent preclinical evaluations of these hybrids is included to highlight the significance of this approach.

摘要

丝素蛋白是一种从丝绸中提取的蛋白质,具有非免疫原性、生物相容性和易于表面修饰等优点,已被广泛应用于各种生物医学领域。然而,体内研究揭示了一些关键挑战,包括快速的酶降解和有限的稳定性。为了拓宽这种天然生物大分子的应用范围,将聚合物接枝到蛋白质表面已成为一种提高蛋白质稳定性和开发智能缀合物的平台。这篇综述文章聚焦于通过蛋白质与聚合物和无机化合物的化学修饰制备的丝素蛋白-杂化系统的应用。还纳入了这些杂化物最近的一些临床前评估,以突出这种方法的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b407/11767523/a5f43d246066/molecules-30-00328-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b407/11767523/dcbcd6600c76/molecules-30-00328-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b407/11767523/d8e8c05e2aa3/molecules-30-00328-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b407/11767523/d6c738958a10/molecules-30-00328-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b407/11767523/4e0de53204c5/molecules-30-00328-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b407/11767523/738bb49ebf26/molecules-30-00328-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b407/11767523/55fdd93bf88f/molecules-30-00328-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b407/11767523/3a37d058994b/molecules-30-00328-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b407/11767523/30a20174470e/molecules-30-00328-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b407/11767523/a5f43d246066/molecules-30-00328-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b407/11767523/dcbcd6600c76/molecules-30-00328-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b407/11767523/d8e8c05e2aa3/molecules-30-00328-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b407/11767523/d6c738958a10/molecules-30-00328-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b407/11767523/4e0de53204c5/molecules-30-00328-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b407/11767523/738bb49ebf26/molecules-30-00328-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b407/11767523/55fdd93bf88f/molecules-30-00328-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b407/11767523/3a37d058994b/molecules-30-00328-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b407/11767523/30a20174470e/molecules-30-00328-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b407/11767523/a5f43d246066/molecules-30-00328-g009.jpg

相似文献

[1]
Fibroin-Hybrid Systems: Current Advances in Biomedical Applications.

Molecules. 2025-1-15

[2]
Silk protein-based hydrogels: Promising advanced materials for biomedical applications.

Acta Biomater. 2015-11-18

[3]
The effect of native silk fibroin powder on the physical properties and biocompatibility of biomedical polyurethane membrane.

Proc Inst Mech Eng H. 2017-4

[4]
Progress in Preparation of Silk Fibroin Microspheres for Biomedical Applications.

Pharm Nanotechnol. 2020

[5]
Ancient fibrous biomaterials from silkworm protein fibroin and spider silk blends: Biomechanical patterns.

Acta Biomater. 2022-11

[6]
Milled non-mulberry silk fibroin microparticles as biomaterial for biomedical applications.

Int J Biol Macromol. 2015-11

[7]
Sustainable Bombyx mori's silk fibroin for biomedical applications as a molecular biotechnology challenge: A review.

Int J Biol Macromol. 2024-4

[8]
Pectin-cellulose hydrogel, silk fibroin and magnesium hydroxide nanoparticles hybrid nanocomposites for biomedical applications.

Int J Biol Macromol. 2021-12-1

[9]
Phosphorylation of silk fibroins improves the cytocompatibility of silk fibroin derived materials: a platform for the production of tuneable material.

Biotechnol J. 2014-10

[10]
Preparation and biomedical applications of silk fibroin-nanoparticles composites with enhanced properties - A review.

Mater Sci Eng C Mater Biol Appl. 2018-11-6

引用本文的文献

[1]
Investigation of the Nonlinear Optical Properties of Silk Fibroin (SF) Using the Z-Scan Method.

Materials (Basel). 2025-2-27

本文引用的文献

[1]
Understanding the Dissolution of Cellulose and Silk Fibroin in 1-ethyl-3-methylimidazolium Acetate and Dimethyl Sulphoxide for Application in Hybrid Films.

Materials (Basel). 2024-10-29

[2]
Covalent Grafting of Functionalized MEW Fibers to Silk Fibroin Hydrogels to Obtain Reinforced Tissue Engineered Constructs.

Biomacromolecules. 2024-3-11

[3]
A comparison of RAFT and ATRP methods for controlled radical polymerization.

Nat Rev Chem. 2021-12

[4]
Silk Fibroin Bioink for 3D Printing in Tissue Regeneration: Controlled Release of MSC extracellular Vesicles.

Pharmaceutics. 2023-1-22

[5]
Silk Fibroin Biomaterials and Their Beneficial Role in Skin Wound Healing.

Biomolecules. 2022-12-12

[6]
Silk Fibroin--Polyaniline Platform for the Design of Biocompatible-Electroactive Substrate.

Polymers (Basel). 2022-11-1

[7]
Novel Approaches and Biomaterials for Bone Tissue Engineering: A Focus on Silk Fibroin.

Materials (Basel). 2022-10-7

[8]
Silk Fibroin-Based Biomaterials for Tissue Engineering Applications.

Molecules. 2022-4-25

[9]
Hybrid Organic-Inorganic Materials and Interfaces With Mixed Ionic-Electronic Transport Properties: Advances in Experimental and Theoretical Approaches.

Front Chem. 2022-4-12

[10]
Thiolated hyaluronic acid/silk fibroin dual-network hydrogel incorporated with bioglass nanoparticles for wound healing.

Carbohydr Polym. 2022-7-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索