Suppr超能文献

锥形束CT引导组织超声粉碎术中用于改善配准的校准校正

Calibration correction to improve registration during cone-beam CT guided histotripsy.

作者信息

Falk Katrina L, Laeseke Paul F, Minesinger Grace M, Ozkan Orhan G, Speidel Michael A, Ziemlewicz Timothy J, Lee Fred T, Wagner Martin G

机构信息

Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

Med Phys. 2025 May;52(5):3216-3227. doi: 10.1002/mp.17644. Epub 2025 Jan 26.

Abstract

BACKGROUND

Histotripsy is a non-invasive, non-ionizing, non-thermal focused ultrasound technique. High amplitude short acoustic pulses converge to create high negative pressures that cavitate endogenous gas into a bubble cloud leading to mechanical tissue destruction. In the United States, histotripsy is approved to treat liver tumors under diagnostic ultrasound guidance but in initial clinical cases, some areas of the liver have not been treated due to bone or gas obstructing the acoustic window for targeting. To address this limitation in visualization, cone-beam computed tomography (CBCT) guided histotripsy was developed to expand the number of tumors and patients that can be treated with histotripsy.

PURPOSE

The purpose of this work is to improve the accuracy of CBCT guided histotripsy by calibrating the therapeutic bubble cloud location relative to the histotripsy robot arm.

METHODS

The calibration correction involves creating a bubble cloud sized treatment (a few mm) in an agar-based phantom consisting of 11 layers with alternating high and low x-ray attenuation. The layers were spaced ∼3 mm apart to allow visualization of mixing after mechanical disintegration from the histotripsy treatment. Bubble cloud treatments were localized using an automated algorithm that minimized a cost function based on the intensity difference within the treatment region on the pre- and post-treatment CBCT. The actual treatment location can be compared to the theoretical bubble cloud location (focal point based on the CAD model of the transducer assembly) to calculate a 3D offset (X, Y, Z), which is used as the calibration correction between the therapeutic bubble cloud location and the histotripsy robot arm. The phantom and algorithm were analyzed to determine parameters that maximized bubble cloud treatment detection (treatment duration, localization accuracy of the phantom, number of bubble clouds) and were tested on four different histotripsy transducers.

RESULTS

Bubble cloud locations were accurately identified with the automated algorithm from post-treatment CBCT images of the multilayer agar phantom. Treating the phantom for 20 seconds was associated with the greatest change in CBCT intensity. The phantom and algorithm were able to localize changes in bubble cloud location with mean residual errors (MRE) between the measured and planned translations of 0.3 ± 0.3 mm in X, -0.2 ± 0.6 mm in Y, and 0.1 ± 1.0 mm in Z. A multi-bubble cloud calibration approach with four adjacent bubble clouds provided a statistically significant lower mean absolute deviation (MAD) in measured 3D offset (0.1, 0.0 and 0.2 mm in X, Y, and Z, respectively) compared to using a single bubble cloud (MAD of 0.2, 1.1 and 1.2 mm in X, Y, and Z, respectively). The calibration correction method measured statistically significantly different 3D transducer offsets between the four histotripsy transducers.

CONCLUSIONS

Creating and analyzing four adjacent bubble clouds together produced more accurate and reproducible 3D offset measurements than analyzing individual bubble clouds. The presented histotripsy bubble cloud calibration correction method is automated, accurate, and can be easily integrated in the current histotripsy workflow to improve accuracy of CBCT guided histotripsy.

摘要

背景

组织超声粉碎术是一种非侵入性、非电离、非热的聚焦超声技术。高振幅短声脉冲汇聚产生高负压,使内源性气体空化形成气泡云,从而导致机械性组织破坏。在美国,组织超声粉碎术已获批准在诊断超声引导下治疗肝脏肿瘤,但在最初的临床病例中,由于骨骼或气体阻碍了用于靶向的声学窗口,肝脏的一些区域未得到治疗。为解决可视化方面的这一局限性,开发了锥形束计算机断层扫描(CBCT)引导下的组织超声粉碎术,以扩大可用组织超声粉碎术治疗的肿瘤数量和患者数量。

目的

本研究的目的是通过校准治疗性气泡云相对于组织超声粉碎术机器人手臂的位置,提高CBCT引导下组织超声粉碎术的准确性。

方法

校准校正包括在基于琼脂的体模中创建一个大小为几毫米的气泡云治疗区域(体模由11层组成,高低X射线衰减交替)。各层间距约3毫米,以便在组织超声粉碎术治疗导致机械崩解后观察混合情况。使用一种自动算法对气泡云治疗区域进行定位,该算法根据治疗前和治疗后CBCT上治疗区域内的强度差异,将一个代价函数最小化。实际治疗位置可与理论气泡云位置(基于换能器组件CAD模型的焦点)进行比较,以计算三维偏移量(X、Y、Z),该偏移量用作治疗性气泡云位置与组织超声粉碎术机器人手臂之间的校准校正。对体模和算法进行分析,以确定使气泡云治疗区域检测最大化的参数(治疗持续时间、体模定位精度、气泡云数量),并在四种不同的组织超声粉碎术换能器上进行测试。

结果

通过多层琼脂体模治疗后的CBCT图像,利用自动算法可准确识别气泡云位置。对体模治疗20秒与CBCT强度的最大变化相关。体模和算法能够定位气泡云位置的变化,测量平移与计划平移之间的平均残余误差(MRE)在X方向为0.3±0.3毫米,Y方向为 -0.2±0.6毫米,Z方向为0.1±1.0毫米。与使用单个气泡云相比,采用四个相邻气泡云的多气泡云校准方法在测量的三维偏移量上具有统计学显著更低的平均绝对偏差(MAD)(X、Y、Z方向分别为0.1、0.0和0.2毫米)(单个气泡云在X、Y、Z方向的MAD分别为0.2、1.1和1.2毫米)。校准校正方法在四种组织超声粉碎术换能器之间测量出统计学显著不同的三维换能器偏移量。

结论

与分析单个气泡云相比,一起创建和分析四个相邻气泡云可产生更准确和可重复的三维偏移量测量结果。所提出的组织超声粉碎术气泡云校准校正方法是自动化的、准确的,并且可以很容易地整合到当前的组织超声粉碎术工作流程中,以提高CBCT引导下组织超声粉碎术的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d2f/12059542/53b521de6740/MP-52-3216-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验