Suppr超能文献

优化微通道中的液滴聚并动力学:使用响应面法和机器学习算法的综合研究。

Optimizing droplet coalescence dynamics in microchannels: A comprehensive study using response surface methodology and machine learning algorithms.

作者信息

Javadpour Seyed Morteza, Kadivar Erfan, Zarneh Zienab Heidary, Kadivar Ebrahim, Gheibi Mohammad

机构信息

Department of Mechanical Engineering, University of Gonabad, Gonabad, Iran.

Department of Physics, Shiraz University of Technology, Shiraz, 71555-313, Iran.

出版信息

Heliyon. 2025 Jan 3;11(1):e41510. doi: 10.1016/j.heliyon.2024.e41510. eCollection 2025 Jan 15.

Abstract

Droplet coalescence in microchannels is a complex phenomenon influenced by various parameters such as droplet size, velocity, liquid surface tension, and droplet-droplet spacing. In this study, we thoroughly investigate the impact of these control parameters on droplet coalescence dynamics within a sudden expansion microchannel using two distinct numerical methods. Initially, we employ the boundary element method to solve the Brinkman integral equation, providing detailed insights into the underlying physics of droplet coalescence. Furthermore, we integrate Response Surface Methodology (RSM) to effectively optimize droplet coalescence dynamics, harnessing the power of machine learning algorithms. Our results showcase the efficacy of these computational techniques in enhancing experimental efficiency. Through rigorous evaluation utilizing Regression Coefficient and Mean Absolute Error metrics, we ascertain the accuracy of our estimations. Our findings highlight the significant influence of key parameters, specifically the non-dimensional initial distance of the droplets (D), viscosity ratio ( ), Capillary number (Ca), and width (w), as identified by the non-dimensional final droplet-droplet spacing (DD), velocity of the first droplet (V), and velocity of the second droplet (V), respectively. This comprehensive approach provides valuable insights into droplet coalescence phenomena and offers a robust framework for optimizing microfluidic systems. The most influential parameters on DD are the values of A and D, while viscosity has the lowest influence on DD. The most influential parameters on droplet velocity are viscosity and channel width, whereas the initial distance and Ca have the least influence on droplet velocity. The comparison of different machine learning algorithms indicates that the best ones for predicting DD, V, and V are function, SMOreg, Lazy-IBK, and Meta-Bagging, respectively.

摘要

微通道中的液滴聚并是一种复杂的现象,受多种参数影响,如液滴大小、速度、液体表面张力和液滴间距。在本研究中,我们使用两种不同的数值方法深入研究了这些控制参数对突然扩张微通道内液滴聚并动力学的影响。首先,我们采用边界元法求解布林克曼积分方程,深入了解液滴聚并的基本物理过程。此外,我们集成响应面方法(RSM)以有效优化液滴聚并动力学,利用机器学习算法的力量。我们的结果展示了这些计算技术在提高实验效率方面的功效。通过使用回归系数和平均绝对误差指标进行严格评估,我们确定了估计的准确性。我们的研究结果突出了关键参数的显著影响,具体而言,分别由无量纲最终液滴间距(DD)、第一个液滴的速度(V)和第二个液滴的速度(V)确定的液滴无量纲初始距离(D)、粘度比( )、毛细管数(Ca)和宽度(w)。这种综合方法为液滴聚并现象提供了有价值的见解,并为优化微流体系统提供了一个强大的框架。对DD影响最大的参数是A和D的值,而粘度对DD的影响最小。对液滴速度影响最大的参数是粘度和通道宽度,而初始距离和Ca对液滴速度的影响最小。不同机器学习算法的比较表明,预测DD、V和V的最佳算法分别是函数、SMOreg、Lazy-IBK和Meta-Bagging。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2217/11759632/f48cb031f6b5/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验