Suppr超能文献

流动状态下内分泌生物人工胰腺组织构建物的氧合作用及功能,用于临床前优化。

Oxygenation and function of endocrine bioartificial pancreatic tissue constructs under flow for preclinical optimization.

作者信息

Moeun Brenden N, Lemaire Florent, Smink Alexandra M, Ebrahimi Orimi Hamid, Leask Richard L, de Vos Paul, Hoesli Corinne A

机构信息

Department of Chemical Engineering, McGill University, Montreal, QC, Canada.

Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

出版信息

J Tissue Eng. 2025 Jan 23;16:20417314241284826. doi: 10.1177/20417314241284826. eCollection 2025 Jan-Dec.

Abstract

Islet transplantation and more recently stem cell-derived islets were shown to successfully re-establish glycemic control in people with type 1 diabetes under immunosuppression. These results were achieved through intraportal infusion which leads to early graft losses and limits the capacity to contain and retrieve implanted cells in case of adverse events. Extra-hepatic sites and encapsulation devices have been developed to address these challenges and potentially create an immunoprotective or immune-privileged environment. Many strategies have achieved reversal of hyperglycemia in diabetic rodents. So far, the results have been less promising when transitioning to humans and larger animal models due to challenges in oxygenation and insulin delivery. We propose a versatile in vitro perfusion system to culture and experimentally study the function of centimeter-scale tissues and devices for insulin-secreting cell delivery. The system accommodates various tissue geometries, experimental readouts, and oxygenation tensions reflective of potential transplantation sites. We highlight the system's applications by using case studies to explore three prominent bioartificial endocrine pancreas (BAP) configurations: (I) with internal flow, (II) with internal flow and microvascularized, and (III) without internal flow. Oxygen concentration profiles modeled computationally were analogous to viability gradients observed experimentally through live/dead endpoint measurements and in case I, time-lapse fluorescence imaging was used to monitor the viability of GFP-expressing cells in real time. Intervascular BAPs were cultured under flow for up to 3 days and BAPs without internal flow for up to 7 days, showing glucose-responsive insulin secretion quantified through at-line non-disruptive sampling. This system can complement other preclinical platforms to de-risk and optimize BAPs and other artificial tissue designs prior to clinical studies.

摘要

胰岛移植以及最近的干细胞衍生胰岛已被证明,在免疫抑制的情况下,能够成功地使1型糖尿病患者的血糖得到控制。这些结果是通过门静脉内输注实现的,然而这会导致早期移植物丢失,并且在出现不良事件时限制了容纳和回收植入细胞的能力。已开发出肝外部位和封装装置来应对这些挑战,并有可能创造一个免疫保护或免疫特权环境。许多策略已在糖尿病啮齿动物身上实现了高血糖的逆转。到目前为止,由于在氧合和胰岛素递送方面存在挑战,在向人类和大型动物模型转化时,结果并不那么乐观。我们提出了一种多功能的体外灌注系统,用于培养和实验研究厘米级组织以及胰岛素分泌细胞递送装置的功能。该系统能够适应各种组织几何形状、实验读数以及反映潜在移植部位的氧合张力。我们通过案例研究来探索三种突出的生物人工内分泌胰腺(BAP)配置,以此突出该系统的应用:(I)具有内部流动,(II)具有内部流动且微血管化,以及(III)无内部流动。通过计算建模的氧浓度分布类似于通过活/死终点测量实验观察到的活力梯度,并且在情况I中,使用延时荧光成像实时监测表达绿色荧光蛋白(GFP)细胞的活力。具有血管间结构的BAP在流动条件下培养长达3天,无内部流动的BAP培养长达7天,通过在线非侵入性采样对葡萄糖反应性胰岛素分泌进行了定量分析。该系统可以补充其他临床前平台,以便在临床研究之前降低生物人工胰腺及其他人工组织设计的风险并进行优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验