Gao Ying, Li Lu, Zhao Fang, Cheng Yi, Jin Mu, Xue Fu-Shan
Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China.
Drug Des Devel Ther. 2025 Jan 20;19:369-387. doi: 10.2147/DDDT.S504179. eCollection 2025.
This study aimed to assess the protective effect of a clinical dose esketamine on cerebral ischemia/reperfusion (I/R) injury and to reveal the potential mechanisms associated with microglial polarization and autophagy.
Experimental cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult rats and simulated by oxygen-glucose deprivation (OGD) in BV-2 microglial cells. Neurological and sensorimotor function, cerebral infarct volume, histopathological changes, mitochondrial morphological changes, and apoptosis of ischemic brain tissues were assessed in the presence or absence of esketamine and the autophagy inducer rapamycin. The expression of biomarkers related to microglial M1 and M2 phenotypes in the ischemic brain tissues was determined by immunofluorescence staining and RT-qPCR, and the expression of proteins associated with autophagy and the AKT signaling pathway in the ischemic brain tissues was assayed by Western blotting.
Esketamine alone and esketamine combined with rapamycin alleviated neurological impairment, improved sensorimotor function, decreased cerebral infarct volume, and mitigated tissue injury in the MCAO rats. Importantly, esketamine promoted microglial phenotypic transition from M1 to M2 in both the MCAO rats and the OGD-treated BV-2 microglia, induced autophagy, and inactivated AKT signaling. Furthermore, the effects of esketamine were enhanced by addition of autophagy inducer rapamycin.
Esketamine at a clinical dose attenuates cerebral I/R injury by inhibiting AKT signaling pathway to facilitate microglial M2 polarization and autophagy. Furthermore, esketamine combined autophagy inducer can provide an improved protection against cerebral I/R injury. Thus, this study provides new insights into the neuroprotective mechanisms of esketamine and the potential therapeutic strategies of cerebral I/R injury.
本研究旨在评估临床剂量艾司氯胺酮对脑缺血/再灌注(I/R)损伤的保护作用,并揭示与小胶质细胞极化和自噬相关的潜在机制。
通过成年大鼠大脑中动脉闭塞(MCAO)诱导实验性脑缺血,并在BV-2小胶质细胞中通过氧糖剥夺(OGD)进行模拟。在有或没有艾司氯胺酮和自噬诱导剂雷帕霉素的情况下,评估神经和感觉运动功能、脑梗死体积、组织病理学变化、线粒体形态变化以及缺血脑组织的凋亡情况。通过免疫荧光染色和RT-qPCR测定缺血脑组织中与小胶质细胞M1和M2表型相关的生物标志物的表达,并通过蛋白质印迹法检测缺血脑组织中与自噬和AKT信号通路相关的蛋白质的表达。
单独使用艾司氯胺酮以及艾司氯胺酮与雷帕霉素联合使用可减轻MCAO大鼠的神经功能障碍,改善感觉运动功能,减少脑梗死体积,并减轻组织损伤。重要的是,艾司氯胺酮在MCAO大鼠和OGD处理的BV-2小胶质细胞中均促进小胶质细胞表型从M1向M2转变,诱导自噬,并使AKT信号失活。此外,添加自噬诱导剂雷帕霉素可增强艾司氯胺酮的作用。
临床剂量的艾司氯胺酮通过抑制AKT信号通路减轻脑I/R损伤,以促进小胶质细胞M2极化和自噬。此外,艾司氯胺酮联合自噬诱导剂可提供更好的脑I/R损伤保护作用。因此,本研究为艾司氯胺酮的神经保护机制和脑I/R损伤的潜在治疗策略提供了新的见解。