Suppr超能文献

使用cTAKES从临床记录中提取住房和粮食不安全信息。

Extracting Housing and Food Insecurity Information From Clinical Notes Using cTAKES.

作者信息

Kim Min Hee, Miramontes Silvia, Mehta Shivani, Schwartz Gabriel L, Kim Ye Ji, Yang Yulin, Hill-Jarrett Tanisha G, Cevallos Nicolas, Chen Ruijia, Glymour M Maria, Ferguson Erin L, Zimmerman Scott C, Choi Minhyuk, Sims Kendra D

机构信息

Institute for Health, Health Care Policy, Aging Research & School of Nursing, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.

Philip R. Lee Institute for Health Policy Studies, University of California San Francisco, San Francisco, California, USA.

出版信息

Health Serv Res. 2025 May;60 Suppl 3(Suppl 3):e14440. doi: 10.1111/1475-6773.14440. Epub 2025 Jan 28.

Abstract

OBJECTIVE

To assess the utility and challenges of using natural language processing (NLP) in electronic health records (EHRs) to ascertain health-related social needs (HRSNs) among older adults.

STUDY SETTING AND DESIGN

We extracted HRSN information using the NLP system Clinical Text Analysis and Knowledge Extraction System (cTAKES), combined with Concept Unique Identifiers and Systematized Nomenclature for Medicine codes. We validated cTAKES performance, via manual chart review, on two HRSNs: food insecurity, which was included in the healthcare system's HRSN screening tool, and housing insecurity, which was not.

DATA SOURCES AND ANALYTIC SAMPLE

De-identified EHRs in a large California healthcare system (January 2013 through October 2022) from 119,127 patients aged 55+ in primary and emergency care settings (n = 1,385,259 clinical notes).

PRINCIPAL FINDINGS

Although cTAKES had a moderate positive predictive value (77.5%) for housing insecurity, housing challenges among older adults frequently did not align with the concepts the algorithm recognized. cTAKES performed poorly for food insecurity (positive predictive value: 18.5%) because this NLP system incorrectly flagged structured fields from the screening tool.

CONCLUSION

Unstandardized terminology and poor integration of HRSN screeners in EHR remain important barriers to identifying older adults' food and housing insecurity using cTAKES.

摘要

目的

评估在电子健康记录(EHR)中使用自然语言处理(NLP)来确定老年人健康相关社会需求(HRSN)的效用和挑战。

研究背景与设计

我们使用NLP系统临床文本分析与知识提取系统(cTAKES),结合概念唯一标识符和医学系统化命名法代码,提取HRSN信息。我们通过人工病历审查,对两种HRSN验证了cTAKES的性能:一种是医疗系统HRSN筛查工具中包含的粮食不安全,另一种是未包含的住房不安全。

数据来源与分析样本

来自加利福尼亚州一个大型医疗系统(2013年1月至2022年10月)中119,127名55岁及以上患者在初级和急诊护理环境中的去识别化EHR(n = 1,385,259条临床记录)。

主要发现

尽管cTAKES对住房不安全具有中等的阳性预测值(77.5%),但老年人的住房挑战往往与该算法识别的概念不一致。cTAKES在粮食不安全方面表现不佳(阳性预测值:18.5%),因为这个NLP系统错误地标记了筛查工具中的结构化字段。

结论

EHR中术语不规范以及HRSN筛查工具整合不佳,仍然是使用cTAKES识别老年人粮食和住房不安全的重要障碍。

相似文献

1

本文引用的文献

3
Social needs screening in primary care: A tool in the fight for health equity?基层医疗中的社会需求筛查:促进健康公平的工具?
Public Health Pract (Oxf). 2024 Jan 24;7:100466. doi: 10.1016/j.puhip.2024.100466. eCollection 2024 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验