Kim Min Hee, Miramontes Silvia, Mehta Shivani, Schwartz Gabriel L, Kim Ye Ji, Yang Yulin, Hill-Jarrett Tanisha G, Cevallos Nicolas, Chen Ruijia, Glymour M Maria, Ferguson Erin L, Zimmerman Scott C, Choi Minhyuk, Sims Kendra D
Institute for Health, Health Care Policy, Aging Research & School of Nursing, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.
Philip R. Lee Institute for Health Policy Studies, University of California San Francisco, San Francisco, California, USA.
Health Serv Res. 2025 May;60 Suppl 3(Suppl 3):e14440. doi: 10.1111/1475-6773.14440. Epub 2025 Jan 28.
To assess the utility and challenges of using natural language processing (NLP) in electronic health records (EHRs) to ascertain health-related social needs (HRSNs) among older adults.
We extracted HRSN information using the NLP system Clinical Text Analysis and Knowledge Extraction System (cTAKES), combined with Concept Unique Identifiers and Systematized Nomenclature for Medicine codes. We validated cTAKES performance, via manual chart review, on two HRSNs: food insecurity, which was included in the healthcare system's HRSN screening tool, and housing insecurity, which was not.
De-identified EHRs in a large California healthcare system (January 2013 through October 2022) from 119,127 patients aged 55+ in primary and emergency care settings (n = 1,385,259 clinical notes).
Although cTAKES had a moderate positive predictive value (77.5%) for housing insecurity, housing challenges among older adults frequently did not align with the concepts the algorithm recognized. cTAKES performed poorly for food insecurity (positive predictive value: 18.5%) because this NLP system incorrectly flagged structured fields from the screening tool.
Unstandardized terminology and poor integration of HRSN screeners in EHR remain important barriers to identifying older adults' food and housing insecurity using cTAKES.
评估在电子健康记录(EHR)中使用自然语言处理(NLP)来确定老年人健康相关社会需求(HRSN)的效用和挑战。
我们使用NLP系统临床文本分析与知识提取系统(cTAKES),结合概念唯一标识符和医学系统化命名法代码,提取HRSN信息。我们通过人工病历审查,对两种HRSN验证了cTAKES的性能:一种是医疗系统HRSN筛查工具中包含的粮食不安全,另一种是未包含的住房不安全。
来自加利福尼亚州一个大型医疗系统(2013年1月至2022年10月)中119,127名55岁及以上患者在初级和急诊护理环境中的去识别化EHR(n = 1,385,259条临床记录)。
尽管cTAKES对住房不安全具有中等的阳性预测值(77.5%),但老年人的住房挑战往往与该算法识别的概念不一致。cTAKES在粮食不安全方面表现不佳(阳性预测值:18.5%),因为这个NLP系统错误地标记了筛查工具中的结构化字段。
EHR中术语不规范以及HRSN筛查工具整合不佳,仍然是使用cTAKES识别老年人粮食和住房不安全的重要障碍。