Liang Marissa S, Dong Zhifei, Julius Susan, Neal Jill, Yang Y Jeffrey
USEPA, Office of Chemical Safety and Pollution Prevention, 1200 Pennsylvania Ave. NW, Washington, DC 20460-0001.
Formally with APTIM, Inc., Coastal, Ports, and Marine Division, 2481 NW Boca Raton Blvd., Boca Raton, FL 33431.
J Water Resour Plan Manag. 2024 Jun;150(6):1-12. doi: 10.1061/jwrmd5.wreng-5483.
Climate change brings intense hurricanes and storm surges to the US Atlantic coast. These disruptive meteorological events, combined with sea level rise (SLR), inundate coastal areas and adversely impact infrastructure and environmental assets. Thus, storm surge projection and associated risk quantification are needed in coastal adaptation planning and emergency management. However, the projections can have large uncertainties depending on the planning time horizon. Excessive uncertainties arise from inadequately quantified ocean-climatic processes that control hurricane formation, storm track, and SLR in time of climate change. For this challenge, we propose an objective-based analytical-statistical approach using the National Oceanic and Atmospheric Administration's (NOAA)'s Sea, Lake, and Overland Surge from Hurricanes (SLOSH) model in scenario analysis of the storm surge impacts. In this approach, synthetic hurricanes (wind profile and track direction) are simulated to yield the likely range of the maximum envelope of water (MEOW), the maximum of the maximum (MOM), local wind speed, and directions. The surge height and time progression at a location are analyzed using a validated SLOSH model for a given adaptation or planning objective with a set of uncertainty tolerance. We further illustrate the approach in three case studies at Mattapoisett (MA), Bridgeport (CT), and Lower Chesapeake Bay along the US Atlantic coast. Simulated MOMs as the worst-case surge scenarios defined the long-term climate risk to the shoreside wastewater plants in Bridgeport and environmental assets in the Lower Chesapeake Bay. The wind-surge probability envelopes in simulated MEOWs provide location-specific estimates of the storm surge probability for local adaptation analysis at four locations in Lower Chesapeake Bay and at Mattapoisett of the southeastern Massachusetts coast. Using the constraints of local bathymetry and topography, the wind-surge probability curves and time progression also provide quantitative probability estimates for emergency response planning, as illustrated in the Mattapoisett case study.
气候变化给美国大西洋沿岸带来了强烈飓风和风暴潮。这些破坏性的气象事件,再加上海平面上升,淹没了沿海地区,对基础设施和环境资产产生了不利影响。因此,在沿海适应规划和应急管理中需要进行风暴潮预测及相关风险量化。然而,根据规划时间范围的不同,这些预测可能存在很大的不确定性。过多的不确定性源于对控制气候变化时期飓风形成、风暴路径和海平面上升的海洋气候过程量化不足。针对这一挑战,我们提出一种基于目标的分析统计方法,在风暴潮影响的情景分析中使用美国国家海洋和大气管理局(NOAA)的飓风引起的海、湖和陆地风暴(SLOSH)模型。在这种方法中,模拟合成飓风(风廓线和路径方向)以得出最大水包络(MEOW)、最大值中的最大值(MOM)、局部风速和风向的可能范围。使用经过验证的SLOSH模型,针对给定的适应或规划目标以及一组不确定性容差,分析某一地点的风暴潮高度和时间变化。我们在美国大西洋沿岸的马塔波伊塞特(MA)、布里奇波特(CT)和下切萨皮克湾的三个案例研究中进一步阐述了该方法。作为最坏情况风暴潮情景的模拟MOM定义了布里奇波特岸边污水处理厂以及下切萨皮克湾环境资产面临的长期气候风险。模拟MEOW中的风浪概率包络为下切萨皮克湾四个地点以及马萨诸塞州东南海岸马塔波伊塞特的局部适应分析提供了特定地点的风暴潮概率估计。如马塔波伊塞特案例研究所示,利用当地水深和地形的限制,风浪概率曲线和时间变化也为应急响应规划提供了定量概率估计。