Bottemanne Hugo, Mouchabac Stephane, Gauld Christophe
MOODS Team, INSERM 1018, CESP (Centre de Recherche en Epidémiologie et Santé des Populations), Université Paris-Saclay, Faculté de Médecine Paris-Saclay, Kremlin Bicêtre 94270, France.
Department of Psychiatry, Bicêtre Hospital, Mood Center Paris Saclay, DMU Neurosciences, Paris-Saclay University, Assistance Publique-Hôpitaux de Paris (AP-HP), Kremlin Bicêtre 94270, France.
Brain. 2025 May 13;148(5):1526-1530. doi: 10.1093/brain/awaf031.
Computational neuropsychiatry is a leading discipline in explaining psychopathology in terms of neuronal message passing, distributed processing and belief propagation in neuronal networks. Active Inference (AI) is a way of representing this dysfunctional signal processing. According to the AI approach, all neuronal processing and action selection can be explained by maximizing Bayesian model evidence or minimizing variational free energy. Following these principles, it has been suggested that dysconnection in neuronal networks results in aberrant belief updating and erroneous inference, leading to psychiatric and neurologic symptoms. However, there is a classic distinction between disorders of inference (or synaptopathy-including the majority of psychiatric disorders) and disorders of brain function (including vascular neurological pathologies and severe forms of tauopathy and synucleinopathies). This distinction is generally based on the idea that synaptopathies impair neuromodulatory precision weighting, leading to rigid inferences or heightened sensitivity to noise, while disorders of brain function are linked to damage in the nervous system (disconnection). This makes it challenging to apply the logic of the free energy principle. We suggest that this distinction will enable future models of neuropsychiatric symptoms to be improved by considering more than neuronal message passing.
计算神经精神病学是一门前沿学科,它从神经元信息传递、分布式处理以及神经网络中的信念传播角度来解释精神病理学。主动推理(AI)是一种描述这种功能失调的信号处理方式。根据主动推理方法,所有的神经元处理和动作选择都可以通过最大化贝叶斯模型证据或最小化变分自由能来解释。遵循这些原则,有人提出神经网络中的连接中断会导致异常的信念更新和错误的推理,进而引发精神和神经症状。然而,在推理障碍(或突触病变——包括大多数精神疾病)和脑功能障碍(包括血管性神经病理学以及严重形式的tau蛋白病和突触核蛋白病)之间存在一个经典的区分。这种区分通常基于这样一种观点,即突触病变会损害神经调节精度加权,导致僵化的推理或对噪声的高度敏感,而脑功能障碍则与神经系统损伤(连接中断)有关。这使得应用自由能原理的逻辑具有挑战性。我们认为,通过考虑不仅仅是神经元信息传递这一点,这种区分将有助于改进未来的神经精神症状模型。