Suppr超能文献

深度学习辅助确定光声断层成像探测器的最佳数量。

Deep learning aided determination of the optimal number of detectors for photoacoustic tomography.

作者信息

Mondal Sudeep, Paul Subhadip, Singh Navjot, Warbal Pankaj, Khanam Zartab, Saha Ratan K

机构信息

Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211015, India.

Department of Information Technology, Indian Institute of Information Technology Allahabad, Prayagraj, 211015, India.

出版信息

Biomed Phys Eng Express. 2025 Feb 7;11(2). doi: 10.1088/2057-1976/adaf29.

Abstract

Photoacoustic tomography (PAT) is a non-destructive, non-ionizing, and rapidly expanding hybrid biomedical imaging technique, yet it faces challenges in obtaining clear images due to limited data from detectors or angles. As a result, the methodology suffers from significant streak artifacts and low-quality images. The integration of deep learning (DL), specifically convolutional neural networks (CNNs), has recently demonstrated powerful performance in various fields of PAT. This work introduces a post-processing-based CNN architecture named residual-dense UNet (RDUNet) to address the stride artifacts in reconstructed PA images. The framework adopts the benefits of residual and dense blocks to form high-resolution reconstructed images. The network is trained with two different types of datasets to learn the relationship between the reconstructed images and their corresponding ground truths (GTs). In the first protocol, RDUNet (identified as RDUNet I) underwent training on heterogeneous simulated images featuring three distinct phantom types. Subsequently, in the second protocol, RDUNet (referred to as RDUNet II) was trained on a heterogeneous composition of 81% simulated data and 19% experimental data. The motivation behind this is to allow the network to adapt to diverse experimental challenges. The RDUNet algorithm was validated by performing numerical and experimental studies involving single-disk, T-shape, and vasculature phantoms. The performance of this protocol was compared with the famous backprojection (BP) and the traditional UNet algorithms. This study shows that RDUNet can substantially reduce the number of detectors from 100 to 25 for simulated testing images and 30 for experimental scenarios.

摘要

光声断层扫描(PAT)是一种无损、非电离且正在迅速发展的混合生物医学成像技术,但由于探测器数据或角度有限,在获取清晰图像方面面临挑战。因此,该方法存在明显的条纹伪影和低质量图像问题。深度学习(DL),特别是卷积神经网络(CNN)的集成,最近在PAT的各个领域都展现出了强大的性能。这项工作引入了一种基于后处理的CNN架构,称为残差密集UNet(RDUNet),以解决重建PA图像中的步长伪影。该框架采用残差块和密集块的优点来形成高分辨率的重建图像。该网络使用两种不同类型的数据集进行训练,以学习重建图像与其相应的真实图像(GT)之间的关系。在第一个方案中,RDUNet(称为RDUNet I)在具有三种不同体模类型的异构模拟图像上进行训练。随后,在第二个方案中,RDUNet(称为RDUNet II)在由81%模拟数据和19%实验数据组成的异构数据上进行训练。这样做的目的是使网络能够适应各种实验挑战。通过对单盘、T形和血管系统体模进行数值和实验研究,对RDUNet算法进行了验证。将该方案的性能与著名的反投影(BP)和传统的UNet算法进行了比较。这项研究表明,对于模拟测试图像,RDUNet可以将探测器数量从100个大幅减少到25个,对于实验场景则可减少到30个。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验