Suppr超能文献

代谢功能障碍相关脂肪性肝病风险预测模型的建立:一项回顾性队列研究

Establishing of a risk prediction model for metabolic dysfunction-associated steatotic liver disease: a retrospective cohort study.

作者信息

Li Nan, Liu Chenbing, Lu Zhangfan, Wu Wenjian, Zhang Feng, Qiu Lihong, Shen Chao, Sheng Di, Liu Zhong

机构信息

Health Management Center, the First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China.

出版信息

BMC Gastroenterol. 2025 Jan 28;25(1):39. doi: 10.1186/s12876-025-03598-4.

Abstract

OBJECTIVES

Over 30% of people worldwide suffer from metabolic dysfunction-associated steatotic liver disease (MASLD), a significant global health issue. Identifying and preventing high-risk individuals for MASLD early is crucial. The purpose of our study is to investigate the factors related to the development of MASLD and develop a risk prediction model for its occurrence.

METHODS

The study included 5107 subjects, divided into training and validation groups in a 7:3 ratio using a random number table method. Collinearity diagnosis and Cox regression were used to identify factors associated with MASLD incidence, and a risk prediction model was created. The model's accuracy, reliability, and clinical applicability were assessed.

RESULTS

Our study indicated that male, body mass index (BMI), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), fasting plasma glucose (FPG), serum uric acid to creatinine ratio (SUA/Cr) and white blood cell (WBC) were associated with MASLD incidence. The elements were determined to be crucial for creating a risk prediction model. The model showed strong discriminative potential with a C-index of 0.783 and the time-dependent AUCs of 0.781, 0.789, 0.814 and 0.796 for 1-4 years in the training group, and a C-index of 0.788 and the time-dependent AUCs of 0.798, 0.782, 0.787 and 0.825 for 1-4 years in validation. Calibration curves confirmed the model's accuracy, and decision curve analysis (DCA) validated its clinical utility.

CONCLUSIONS

The model may provide clinical physicians with a reliable method for identifying high-risk populations for MASLD and serve as a guide for developing prediction models for other diseases.

摘要

目的

全球超过30%的人患有代谢功能障碍相关脂肪性肝病(MASLD),这是一个重大的全球健康问题。尽早识别和预防MASLD的高危个体至关重要。我们研究的目的是调查与MASLD发生相关的因素,并建立其发生的风险预测模型。

方法

该研究纳入5107名受试者,采用随机数字表法按7:3的比例分为训练组和验证组。使用共线性诊断和Cox回归来识别与MASLD发病率相关的因素,并创建一个风险预测模型。评估该模型的准确性、可靠性和临床适用性。

结果

我们的研究表明,男性、体重指数(BMI)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、空腹血糖(FPG)、血清尿酸与肌酐比值(SUA/Cr)和白细胞(WBC)与MASLD发病率相关。这些因素被确定为创建风险预测模型的关键因素。该模型在训练组中显示出很强的判别潜力,C指数为0.783,1至4年的时间依赖性AUC分别为0.781、0.789、0.814和0.796;在验证组中,C指数为0.788,1至4年的时间依赖性AUC分别为0.798、0.782、0.787和0.825。校准曲线证实了模型的准确性,决策曲线分析(DCA)验证了其临床实用性。

结论

该模型可为临床医生提供一种识别MASLD高危人群的可靠方法,并为其他疾病预测模型的开发提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eae7/11773756/1c28f61ef6de/12876_2025_3598_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验