Suppr超能文献

基于连体网络的心电图分析改善心肌梗死诊断

Improving myocardial infarction diagnosis with Siamese network-based ECG analysis.

作者信息

Gadag Vaibhav, Singh Simrat, Khatri Anshul Harish, Mishra Shruti, Satapathy Sandeep Kumar, Cho Sung-Bae, Chowdhury Abishi, Pal Amrit, Mohanty Sachi Nandan

机构信息

School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India.

Centre for Advanced Data Science, Vellore Institute of Technology, Chennai, Tamil Nadu, India.

出版信息

PLoS One. 2025 Jan 30;20(1):e0313390. doi: 10.1371/journal.pone.0313390. eCollection 2025.

Abstract

BACKGROUND

Heart muscle damage from myocardial infarction (MI) is brought on by insufficient blood flow. The leading cause of death for middle-aged and older people worldwide is myocardial infarction (MI), which is difficult to diagnose because it has no symptoms. Clinicians must evaluate electrocardiography (ECG) signals to diagnose MI, which is difficult and prone to observer bias. To be effective in actual practice, an automated, and computerized detection system for Myocardial Infarction using ECG images, must meet a number of criteria.

OBJECTIVE

In an actual clinical situation, these requirements-such as dependability, simplicity, and superior decision-making abilities-remain crucial. In the current work, we have developed a model using a dataset that consists of a combination of 928 ECG images taken from publicly available Mendeley Data. It was converted into three classes Myocardial Infarction, Abnormal heartbeat, and Normal.

METHODS

The dataset is then imported, pre-processed, and split into a 70:20:10 ratio of training, validation, and testing. It is then trained using the Siamese Network Model.

RESULTS

The classification accuracy comes out to be 98%. The algorithm works excellently with datasets having class imbalance by taking pair of images as input. The validation and testing classification matrix is then generated and the evaluation metrics for both of them come out to be a near-perfect value.

CONCLUSION

In this study, we developed the ECG signals based early detection of cardiovascular diseases with Siamese network model.

摘要

背景

心肌梗死(MI)导致的心肌损伤是由血流不足引起的。心肌梗死是全球中老年人的主要死因,由于其没有症状,难以诊断。临床医生必须评估心电图(ECG)信号来诊断心肌梗死,这很困难且容易出现观察者偏差。为了在实际应用中有效,使用心电图图像的心肌梗死自动计算机检测系统必须满足许多标准。

目的

在实际临床情况下,这些要求,如可靠性、简单性和卓越的决策能力,仍然至关重要。在当前的工作中,我们使用一个数据集开发了一个模型,该数据集由从公开可用的Mendeley数据中获取的928张心电图图像组合而成。它被分为心肌梗死、心跳异常和正常三类。

方法

然后导入数据集,进行预处理,并按70:20:10的比例划分为训练集、验证集和测试集。然后使用连体网络模型进行训练。

结果

分类准确率达到98%。该算法以图像对作为输入,对具有类别不平衡的数据集效果良好。然后生成验证和测试分类矩阵,两者的评估指标都接近完美值。

结论

在本研究中,我们使用连体网络模型开发了基于心电图信号的心血管疾病早期检测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab9/11781727/2b939bc60c18/pone.0313390.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验