Liao Yu-Long, Wang Xi-Long, Yuan Hong, Li Yong-Jian, Xu Chun-Ming, Li Shuai, Hu Jiang-Kui, Yang Shi-Jie, Deng Fang, Liu Jia, Huang Jia-Qi
School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China.
Adv Mater. 2025 Mar;37(10):e2419782. doi: 10.1002/adma.202419782. Epub 2025 Jan 31.
Solid-state lithium (Li) metal batteries (SSLMBs) have garnered considerable attention due to their potential for high energy density and intrinsic safety. However, their widespread development has been hindered by the low ionic conductivity of solid-state electrolytes. In this contribution, a novel Li-rich transport mechanism is proposed to achieve ultrafast Li-ion conduction in composite solid-state electrolytes. By incorporating cation-deficient dielectric nanofillers into polymer matrices, it is found that negatively charged cation defects effectively intensify the adsorption of Li ions, resulting in a high Li-ion concentration enrichment on the surface of fillers. More importantly, these formed Li-rich layers are interconnected to establish continuous ultrafast Li-ion transport networks. The composite electrolyte exhibited a remarkably low ion transport activation energy (0.17 eV) and achieved an unprecedented ionic conductivity of approaching 1 × 10⁻ S cm⁻ at room temperature. The Li||LiNiCoMoO full cells demonstrated an extended cycling life of over 200 cycles with a capacity retention of 70.7%. This work provides a fresh insight into improving Li-ion transport by constructing interconnected Li-rich transport networks, paving the way for the development of high-performance SSLMBs.
固态锂金属电池(SSLMBs)因其具有高能量密度和本质安全性的潜力而备受关注。然而,固态电解质的低离子电导率阻碍了它们的广泛发展。在本论文中,提出了一种新型的富锂传输机制,以在复合固态电解质中实现超快锂离子传导。通过将阳离子缺陷型介电纳米填料掺入聚合物基体中,发现带负电的阳离子缺陷有效地增强了锂离子的吸附,导致填料表面锂离子浓度高度富集。更重要的是,这些形成的富锂层相互连接,建立了连续的超快锂离子传输网络。该复合电解质表现出极低的离子传输活化能(0.17 eV),并在室温下实现了前所未有的接近1×10⁻³ S cm⁻¹的离子电导率。Li||LiNiCoMoO全电池展示了超过200次循环的延长循环寿命,容量保持率为70.7%。这项工作为通过构建相互连接的富锂传输网络来改善锂离子传输提供了新的见解,为高性能SSLMBs的发展铺平了道路。