Bao Jichen, Somvanshi Tejas, Tian Yufang, Laird Maxime G, Garcia Pierre Simon, Schöne Christian, Rother Michael, Borrel Guillaume, Scheller Silvan
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland.
Evolutionary Biology of the Microbial Cell, Institut Pasteur, Université Paris Cité, UMR CNRS6047, France.
FEBS J. 2025 May;292(9):2251-2271. doi: 10.1111/febs.17409. Epub 2025 Jan 31.
Methanosarcinales are versatile methanogens, capable of regulating most types of methanogenic pathways. Despite the versatile metabolic flexibility of Methanosarcinales, no member of this order has been shown to use formate for methanogenesis. In the present study, we identified a cytosolic formate dehydrogenase (FdhAB) present in several Methanosarcinales, likely acquired by independent horizontal gene transfers after an early evolutionary loss, encouraging re-evaluation of our understanding of formate utilization in Methanosarcinales. To explore whether formate-dependent (methyl-reducing or CO-reducing) methanogenesis can occur in Methanosarcinales, we engineered two different strains of Methanosarcina acetivorans by functionally expressing FdhAB from Methanosarcina barkeri in M. acetivorans. In the first strain, fdhAB was integrated into the N-methyl- tetrahydrosarcinapterin:coenzyme M methyltransferase (mtr) operon, making it capable of growing by reducing methanol with electrons from formate. In the second strain, fdhAB was integrated into the F-reducing hydrogenase (frh) operon, instead of the mtr operon, enabling its growth with formate as the only source of carbon and energy after adaptive laboratory evolution. In this strain, one CO is reduced to one methane with electrons from oxidizing four formate to four CO, a metabolism reported only in methanogens without cytochromes. Although methanogens without cytochromes typically utilize flavin-based electron bifurcation to generate the ferredoxins needed for CO activation, we hypothesize that, in our engineered strains, reduced ferredoxins are obtained via the Rhodobacter nitrogen fixation complex complex running in reverse. Our work demonstrates formate-dependent methyl-reducing and CO-reducing methanogenesis in M. acetivorans that is enabled by the flexible nature of the microbe working in tandem with the nurturing provided.
甲烷八叠球菌目是多功能产甲烷菌,能够调节大多数类型的产甲烷途径。尽管甲烷八叠球菌目具有多种代谢灵活性,但该目成员均未显示出利用甲酸盐进行产甲烷的能力。在本研究中,我们鉴定出几种甲烷八叠球菌目中存在的一种胞质甲酸脱氢酶(FdhAB),它可能是在早期进化丧失后通过独立的水平基因转移获得的,这促使我们重新评估对甲烷八叠球菌目中甲酸盐利用的理解。为了探究在甲烷八叠球菌目中是否能发生依赖甲酸盐的(甲基还原或一氧化碳还原)产甲烷过程,我们通过在嗜乙酰甲烷八叠球菌中功能性表达巴氏甲烷八叠球菌的FdhAB,构建了两种不同的嗜乙酰甲烷八叠球菌菌株。在第一种菌株中,fdhAB被整合到N - 甲基 - 四氢萨菌素:辅酶M甲基转移酶(mtr)操纵子中,使其能够利用来自甲酸盐的电子还原甲醇进行生长。在第二种菌株中,fdhAB被整合到F - 还原氢化酶(frh)操纵子而非mtr操纵子中,经过适应性实验室进化后,使其能够以甲酸盐作为唯一的碳源和能源进行生长。在这种菌株中,一个一氧化碳被还原为一个甲烷,同时四个甲酸盐被氧化为四个一氧化碳,这种代谢方式仅在无细胞色素的产甲烷菌中报道过。尽管无细胞色素的产甲烷菌通常利用基于黄素的电子分叉来生成一氧化碳活化所需的铁氧化还原蛋白,但我们推测,在我们构建的菌株中,还原型铁氧化还原蛋白是通过反向运行的红杆菌固氮复合体获得的。我们的工作证明了嗜乙酰甲烷八叠球菌中依赖甲酸盐的甲基还原和一氧化碳还原产甲烷过程,这是由微生物的灵活性与所提供的培育条件协同作用实现的。