文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

单节段固定中三种不同的螺钉轨迹:有限元分析与生物力学研究

Three different screw trajectories in single segment fixation: a finite element analysis and biomechanical study.

作者信息

Wang Yuetian, Liu Haoran, Li Bingxu, Wang Shijun, Sun Haolin

机构信息

Department of Orthopedics, Peking University First Hospital, Beijing, China.

Department of Orthopedics, Peking University First Hospital, Beijing, China.

出版信息

Spine J. 2025 Jul;25(7):1552-1563. doi: 10.1016/j.spinee.2025.01.029. Epub 2025 Jan 30.


DOI:10.1016/j.spinee.2025.01.029
PMID:39892711
Abstract

BACKGROUD CONTEXT: Conventional pedicle screw (CPS) fixation in osteoporotic spines presents significant challenges. Cortical bone trajectory (CBT) screws can enhance screw holding power by increasing contact with cortical bone. However, the standard CBT (S-CBT) screws may encounter a series of problems such as stress concentration and diminished fatigue resistance. PURPOSE: The S-CBT screw technique has been modified to accommodate longer screws, and the biomechanical behaviors of this modified CBT (M-CBT) screw technique were investigated. STUDY DESIGN: A finite element analysis and biomechanical cadaveric study. METHODS: A validated nonlinearly finite element model spanning L1-S1 was employed in this study. Three L4-5 fusion models, namely CPS, M-CBT, and S-CBT, were generated using interbody fusion cages and different screw fixations. Next, the models were subjected to loading protocols to simulate flexion, extension, lateral bending, and rotation motion. The range of motion (ROM) and peak von Mises stress of the Cage, rods, screws, and intervertebral discs were analyzed. Besides, 3 types of cadaveric lumbar fusion modes were constructed using diverse screw trajectories. These models were cycled 10,000 times to measure the vertebral body displacement. Afterward, the individual screws were subjected to axial pull-out tests, and the maximum pulling-out force was documented. Finally, the data from the 3 fusion models were compared. RESULTS: Regarding 6 degrees of freedom movements, the 3 fixation models significantly increased the ROM of the adjacent segments (L3-4 and L5-S1) (p<.01). However, the differences in ROM increments among the 3 models were not statistically significant (p=.815). The peak von Mises stress of the cage for the M-CBT model was lower by -1.06%, 37.75%, 10.28%, and 17.55% compared with the S-CBT model during flexion, extension, right bending, and left rotation directions, respectively. Similarly, the peak von Mises stress of L5 screws for the M-CBT model was lower by 50.57%, 59.98%, 47.29%, 64.07%, 63.24%, and 50.45% compared with S-CBT during flexion, extension, left bending, right bending, left rotation, and right rotation, respectively. In the biomechanical test, the fatigue displacement results revealed that the displacement of M-CBT model was intermediate between the S-CBT and CPS models under both maximum and minimum forces, with statistically significant differences (p<.05). Additionally, the results of the antipullout test following fatigue loads demonstrated that the M-CBT group exhibited the highest maximum pull-out force (Fmax) (381.80 [119.00, 852.20]), followed by the CPS group (329.10 [117.00, 507.80]) and the S-CBT group (321.50 [196.60, 887.20]), but the differences were not statistically significant (p=.665) in the upper vertebral subgroup. Conversely, the Fmax of M-CBT group (384.20 [314.00, 851.20]) was significantly higher than that of S-CBT group (264.70 [118.80, 477.40]) and CPS group (282.20 [50.80, 595.20]) in the lower vertebral subgroup, with a significant difference between M-CBT and S-CBT (p=.037). CONCLUSION: M-CBT could enhance the control force of the anterior column of the vertebral body by increasing the inserted screw length, minimizing the stress on the cages and screws, and optimizing the antifatigue performance of the internal fixation system compared to S-CBT. CLINICAL SIGNIFICANCES: M-CBT screw technique shows better biomechanical properties compared to both S-CBT and CPS techniques, providing a more stable and effective internal fixation option for internal fixation in osteoporotic vertebrae.

摘要

背景:骨质疏松性脊柱的传统椎弓根螺钉(CPS)固定存在重大挑战。皮质骨轨迹(CBT)螺钉可通过增加与皮质骨的接触来增强螺钉的把持力。然而,标准CBT(S-CBT)螺钉可能会遇到一系列问题,如应力集中和抗疲劳性降低。 目的:对S-CBT螺钉技术进行改进以适应更长的螺钉,并研究这种改进的CBT(M-CBT)螺钉技术的生物力学行为。 研究设计:有限元分析和生物力学尸体研究。 方法:本研究采用了一个经过验证的跨越L1-S1的非线性有限元模型。使用椎间融合器和不同的螺钉固定方式生成了三个L4-5融合模型,即CPS、M-CBT和S-CBT。接下来,对模型施加加载方案以模拟前屈、后伸、侧屈和旋转运动。分析了椎间融合器、棒、螺钉和椎间盘的活动范围(ROM)和峰值冯·米塞斯应力。此外,使用不同的螺钉轨迹构建了3种尸体腰椎融合模式。这些模型循环10000次以测量椎体位移。之后,对单个螺钉进行轴向拔出试验,并记录最大拔出力。最后,比较了3个融合模型的数据。 结果:关于六个自由度的运动,3种固定模型均显著增加了相邻节段(L3-4和L5-S1)的ROM(p<.01)。然而,3种模型之间ROM增加量的差异无统计学意义(p=.815)。与S-CBT模型相比,M-CBT模型在屈曲、伸展、右侧弯曲和左侧旋转方向上,椎间融合器的峰值冯·米塞斯应力分别降低了-1.06%、37.75%、10.28%和17.55%。同样,与S-CBT模型相比,M-CBT模型在屈曲、伸展、左侧弯曲、右侧弯曲、左侧旋转和右侧旋转时,L5螺钉的峰值冯·米塞斯应力分别降低了50.57%、59.98%、47.29%、64.07%、63.24%和50.45%。在生物力学测试中,疲劳位移结果显示,在最大和最小力作用下,M-CBT模型的位移介于S-CBT和CPS模型之间,差异有统计学意义(p<.05)。此外,疲劳载荷后的拔出试验结果表明,M-CBT组的最大拔出力(Fmax)最高(381.80[119.00,852.20]),其次是CPS组(329.10[117.00,507.80])和S-CBT组(321.50[196.60,887.20]),但上位椎体亚组中的差异无统计学意义(p=.665)。相反,在下位椎体亚组中,M-CBT组的Fmax(384.20[314.00,851.20])显著高于S-CBT组(264.70[118.80,477.40])和CPS组(282.20[50.80,595.20]),M-CBT与S-CBT之间差异有统计学意义(p=.037)。 结论:与S-CBT相比,M-CBT可通过增加螺钉插入长度、最小化椎间融合器和螺钉上的应力以及优化内固定系统的抗疲劳性能来增强椎体前柱的控制力。 临床意义:与S-CBT和CPS技术相比,M-CBT螺钉技术具有更好的生物力学性能,为骨质疏松性椎体的内固定提供了一种更稳定、有效的内固定选择。

相似文献

[1]
Three different screw trajectories in single segment fixation: a finite element analysis and biomechanical study.

Spine J. 2025-7

[2]
Maximizing screw length in expandable lateral lumbar interbody spacers with integrated fixation may obviate the need for supplemental pedicle screws.

Spine J. 2025-7

[3]
Finite element analysis of percutaneous uniplanar screw fixation in the treatment of thoracolumbar fractures.

Eur J Med Res. 2025-6-23

[4]
Biomechanical differences of three cephalic fixation methods for patients with basilar invagination and atlantoaxial dislocation in the setting of congenital atlas occipitalization: a finite element analysis.

Spine J. 2025-2

[5]
Biomechanical investigation of the hybrid lumbar fixation technique with traditional and cortical bone trajectories in transforaminal lumbar interbody fusion: finite element analysis.

J Orthop Surg Res. 2023-7-31

[6]
Clinical evaluation and finite element analysis of bone cement-augmented anterolateral screw fixation versus percutaneous bilateral pedicle screw fixation co-applied with oblique lumbar interbody fusion for single-level lumbar degenerative diseases with osteoporosis.

Front Bioeng Biotechnol. 2025-6-10

[7]
Biomechanical evaluation of modified and traditional cortical bone trajectory technique on adjacent segment degeneration in transforaminal lumbar interbody fusion-finite element analysis.

BMC Musculoskelet Disord. 2024-1-2

[8]
Biomechanical Changes of Adjacent and Fixed Segments Through Cortical Bone Trajectory Screw Fixation versus Traditional Trajectory Screw Fixation in the Lumbar Spine: A Finite Element Analysis.

World Neurosurg. 2021-7

[9]
Biomechanical Comparison of a Novel Facet Joint Fusion Fixation Device With Conventional Pedicle Screw Fixation Device: A Finite Element Analysis.

Orthop Surg. 2025-4

[10]
Biomechanical assessment of different transforaminal lumbar interbody fusion constructs in normal and osteoporotic condition: a finite element analysis.

Spine J. 2024-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索