Suppr超能文献

基于VO的采用U形和C形纳米结构的偏振无关双波长等离子体开关。

VO based polarization-independent dual-wavelength plasmonic switches using U and C shaped nanostructures.

作者信息

Dalal Kirti, Sharma Yashna

机构信息

Department of Electronics and Communication Engineering, Delhi Technological University, New Delhi, Delhi, India.

出版信息

Sci Rep. 2025 Feb 1;15(1):4020. doi: 10.1038/s41598-025-85349-9.

Abstract

We have proposed vanadium dioxide (VO) based polarization-independent dual-wavelength plasmonic switches using a periodic combination of U and C shaped gold nanostructures on a gold coated silicon dioxide (SiO) substrate with a thin VO film as spacer between the nanostructures and the underlying substrate. A spatial offset between the two nanostructures is taken such that high switching efficiency is obtained simultaneously at two wavelengths for all polarization angles of incident light. The switching mechanism is based on the transformation of the phase change material, VO, from its monoclinic semiconductor state to its tetragonal metal state when exposed to an external stimulus. This transformation leads to a significant change in the optical behavior of the proposed switch, leading to an effective transition from ON to OFF state. Finite difference time domain (FDTD) modelling shows that the proposed switches are capable of achieving a high extinction ratio of ~ 20 dB at two wavelengths-1560 nm and 2130 nm-for incident light with any polarization angle. To demonstrate the spectral tunability of switching wavelengths, the optimization of the geometrical parameters is also carried out. These switches can be employed in telecommunication networks, optical communications, and integrated photonic circuits.

摘要

我们提出了基于二氧化钒(VO)的偏振无关双波长等离子体开关,该开关在涂有金的二氧化硅(SiO)衬底上使用U形和C形金纳米结构的周期性组合,并在纳米结构与下层衬底之间以薄VO膜作为间隔层。两个纳米结构之间采用空间偏移,以便在所有入射光偏振角下的两个波长处同时获得高开关效率。开关机制基于相变材料VO在受到外部刺激时从单斜半导体状态转变为四方金属状态。这种转变导致所提出的开关的光学行为发生显著变化,从而实现从导通状态到关断状态的有效转变。时域有限差分(FDTD)建模表明,所提出的开关能够在1560纳米和2130纳米这两个波长处,对于任意偏振角的入射光实现约20分贝的高消光比。为了证明开关波长的光谱可调性,还对几何参数进行了优化。这些开关可用于电信网络、光通信和集成光子电路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38ac/11787348/e605c342dfa5/41598_2025_85349_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验