Mauge-Lewis Kevin A, Ramaiahgari Sreenivasa C, Auerbach Scott S, Roberts Georgia K, Waidyanatha Suramya, Fenton Suzanne E, Phadke Dhiral P, Balik-Meisner Michele R, Tandon Arpit, Mav Deepak, Howard Brian, Shah Ruchir, Sparrow Barney, Gorospe Jenni, Ferguson Stephen S
Division of Translational Toxicology, National Institute for Environmental Sciences, 111 TW Alexander Drive, Durham, North Carolina 27709, United States.
Sciome, 1920 NC-54 Suite 510 & 520, Durham, North Carolina 27713, United States.
Environ Sci Technol. 2025 Feb 11;59(5):2423-2435. doi: 10.1021/acs.est.4c10595. Epub 2025 Feb 2.
Aqueous film-forming foams (AFFFs) are complex product mixtures that often contain per- and polyfluorinated alkyl substances (PFAS) to enhance fire suppression and protect firefighters. However, PFAS have been associated with a range of adverse health effects (e.g., liver and thyroid disease and cancer), and innovative approach methods to better understand their toxicity potential and identify safer alternatives are needed. In this study, we investigated a set of 30 substances (e.g., AFFF, PFAS, and clinical drugs) using differentiated cultures of human hepatocytes (HepaRG, 2D), high-throughput transcriptomics, deep learning of cell morphology images, and liver enzyme leakage assays with benchmark dose analysis to (1) predict the potency ranges for human liver injury, (2) delineate gene- and pathway-level transcriptomic points-of-departure for molecular hazard characterization and prioritization, (3) characterize human hepatocellular response similarities to inform regulatory read-across efforts, and (4) introduce an innovative approach to translate mechanistic hepatocellular response data to predict the potency ranges for PFAS-induced hepatomegaly in vivo. Collectively, these data fill important mechanistic knowledge gaps with PFAS/AFFF and represent a scalable platform to address the thousands of PFAS in commerce for greener chemistries and next-generation risk assessments.
水成膜泡沫灭火剂(AFFFs)是复杂的产品混合物,通常含有全氟和多氟烷基物质(PFAS)以增强灭火效果并保护消防员。然而,PFAS与一系列不良健康影响(如肝脏和甲状腺疾病以及癌症)有关,因此需要创新的方法来更好地了解其潜在毒性并确定更安全的替代品。在本研究中,我们使用人肝细胞(HepaRG,二维)的分化培养物、高通量转录组学、细胞形态图像的深度学习以及具有基准剂量分析的肝酶泄漏试验,对一组30种物质(如AFFF、PFAS和临床药物)进行了研究,以(1)预测人类肝损伤的效力范围,(2)描绘分子危害特征和优先级的基因和通路水平转录组学出发点,(3)表征人类肝细胞反应的相似性以指导监管类推工作,以及(4)引入一种创新方法来转化机制性肝细胞反应数据,以预测PFAS在体内诱导肝肿大的效力范围。总体而言,这些数据填补了PFAS/AFFF重要的机制知识空白,并代表了一个可扩展的平台,以应对商业中数千种PFAS,实现更绿色的化学和下一代风险评估。