Zhou Meng, Zhang Shuo, Zhang Xinya
School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China.
School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China.
Int J Biol Macromol. 2025 Apr;302:140562. doi: 10.1016/j.ijbiomac.2025.140562. Epub 2025 Jan 31.
The vast majority of conductive polymer composites (CPCs) currently available for electromagnetic interference (EMI) shielding rely on inorganic conductive fillers to construct conductive networks. However, the strategy inevitably causes some compromises in the biocompatibility, biodegradability, and mechanical properties of CPCs. In this work, the filler-free and high conductive cellulose nanofiber (CNF) composite papers containing poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) doped by lithium bis(trifloromethanesulfonyl) imide (Li-TFSI) are reported. The resultant Li-TFSI@PEDOT:PSS/CNF (LPPC) composite papers exhibit an exceptional absolute EMI shielding effectiveness of 14,525.5 dB∙cm, surpassing the reported values of many CPCs-based EMI shielding materials containing inorganic fillers. Li-TFSI can induce the structural reorganization of PEDOT chains. The conductivity of Li-TFSI@PEDOT:PSS was boosted with the enhancement of the crystalline order and oxidation level of PEDOT chains. Furthermore, the obtained LPPC composite papers demonstrate outstanding mechanical properties with a tensile strength of 44.42 MPa and EMI shielding stability with a retention ratio of up to 97 %, which are desirable for EMI shielding in wearable devices. Therefore, this work provides a feasible strategy to construct filler-free CPCs-based EMI shielding materials, which are expected to provide electromagnetic protection for the next flexible devices.
目前可用于电磁干扰(EMI)屏蔽的绝大多数导电聚合物复合材料(CPC)都依赖无机导电填料来构建导电网络。然而,这种策略不可避免地会在CPC的生物相容性、生物降解性和机械性能方面做出一些妥协。在这项工作中,报道了含有由双(三氟甲磺酰)亚胺锂(Li-TFSI)掺杂的聚(3,4-乙撑二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)的无填料且高导电的纤维素纳米纤维(CNF)复合纸。所得的Li-TFSI@PEDOT:PSS/CNF(LPPC)复合纸表现出14525.5 dB∙cm的出色绝对EMI屏蔽效能,超过了许多含无机填料的基于CPC的EMI屏蔽材料的报道值。Li-TFSI可诱导PEDOT链的结构重组。随着PEDOT链结晶度和氧化水平的提高,Li-TFSI@PEDOT:PSS的电导率得到提升。此外,所获得的LPPC复合纸表现出出色的机械性能,拉伸强度为44.42 MPa,EMI屏蔽稳定性高达97%的保留率,这对于可穿戴设备中的EMI屏蔽是理想的。因此,这项工作提供了一种构建基于无填料CPC的EMI屏蔽材料的可行策略,有望为下一代柔性设备提供电磁保护。