Suppr超能文献

双轴应变增强TiCO MXene对NH和NO的传感性能:第一性原理计算的见解

Enhanced NH and NO sensing performance of TiCO MXene by biaxial strain: insights from first-principles calculations.

作者信息

Khammuang Satchakorn, Wongphen Kantaphong, Hussain Tanveer, Kotmool Komsilp

机构信息

College of Advanced Manufacturing Innovation, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.

School of Science and Technology, University of New England, Armidale, New South Wales 2351, Australia.

出版信息

Phys Chem Chem Phys. 2025 Feb 12;27(7):3827-3833. doi: 10.1039/d4cp04127e.

Abstract

In this study, we investigate the adsorption properties of CO, NH, and NO gases on TiCO MXene surfaces through density functional theory (DFT) calculations. A comprehensive analysis of the adsorption preferences, electronic properties, work function (), sensitivity (), and recovery time () was conducted, focusing on the effects of biaxial strain () ranging from -2% to 4%. At free strain, toxic gases can adsorb onto the TiCO surface, with adsorption energies () of -0.096 eV (CO), -0.344 eV (NH), and -0.349 eV (NO), indicating moderate interactions between NH, NO and the TiCO surface, while CO displays weaker physisorption. Electron density difference (EDD) and electron localization function (ELF) analyses underscore the electron transfer mechanisms, supporting the enhanced sensitivity of TiCO for NH and NO detection. The influence of on gas adsorption behaviour was also studied, demonstrating that tensile strain enhances NH adsorption ( = -0.551 eV at = 4%), while NO exhibits an inverse trend under compressive strain ( = -0.403 eV at = -2%). The based on a change rate of was evaluated to be around 12% and 6% for NH and NO, respectively, within the calculated strain range, indicating sufficient detection capability. Additionally, the for NH and NO detection was computed. At 0% strain and 300 K, the values for NH and NO are in the microsecond range, suggesting that detecting these gases under normal conditions poses a challenge. However, strain-tuned TiCO and lowered temperature enhance the gas sensing performance, with increased values at tensile strain for NH and compressive strain for NO. These results suggest that TiCO MXene, when tuned with biaxial strain, is a promising candidate for detecting NH and NO at low to room temperatures.

摘要

在本研究中,我们通过密度泛函理论(DFT)计算研究了CO、NH和NO气体在TiCO MXene表面的吸附特性。对吸附偏好、电子性质、功函数()、灵敏度()和恢复时间()进行了全面分析,重点关注了-2%至4%的双轴应变()的影响。在自由应变下,有毒气体可吸附在TiCO表面,吸附能()分别为-0.096 eV(CO)、-0.344 eV(NH)和-0.349 eV(NO),表明NH、NO与TiCO表面之间存在适度相互作用,而CO表现出较弱的物理吸附。电子密度差(EDD)和电子定位函数(ELF)分析强调了电子转移机制,支持了TiCO对NH和NO检测的增强灵敏度。还研究了对气体吸附行为的影响,结果表明拉伸应变增强了NH的吸附(在 = 4%时 = -0.551 eV),而NO在压缩应变下呈现相反趋势(在 = -2%时 = -0.403 eV)。在计算的应变范围内,基于变化率的分别评估为NH约12%和NO约6%,表明具有足够的检测能力。此外,还计算了NH和NO检测的。在0%应变和300 K时,NH和NO的 值在微秒范围内,这表明在正常条件下检测这些气体具有挑战性。然而,应变调谐的TiCO和降低的温度增强了气敏性能,NH在拉伸应变下和NO在压缩应变下的值增加。这些结果表明,双轴应变调谐后的TiCO MXene是在低温至室温下检测NH和NO的有前途的候选材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验