Suppr超能文献

直肠癌中的放射组学:应用现状与研究进展

Radiomics in rectal cancer: current status of use and advances in research.

作者信息

Huang Wei-Qin, Lin Ruo-Xuan, Ke Xiao-Hui, Deng Xiao-Hong, Ni Shi-Xiong, Tang Lina

机构信息

Department of Ultrasonography, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fudan University Shanghai Cancer Center, Fuzhou, China.

出版信息

Front Oncol. 2025 Jan 17;14:1470824. doi: 10.3389/fonc.2024.1470824. eCollection 2024.

Abstract

Rectal cancer is a leading cause of morbidity and mortality among patients with malignant tumors in China. In light of the advances made in therapeutic approaches such as neoadjuvant therapy and total mesorectal excision, precise preoperative assessment has become crucial for developing a personalized treatment plan. As an emerging technology, radiomics has gained widespread application in the diagnosis, assessment of treatment response, and analysis of prognosis for rectal cancer by extracting high-throughput quantitative features from medical images. Radiomics thus demonstrates considerable potential for optimizing clinical decision-making. In this paper, we reviewed recent research focusing on advances in the use of radiomics for managing rectal cancer. The review covers TNM staging of tumors, assessment of neoadjuvant therapy outcomes, and survival prediction. We also discuss the challenges and prospects for future developments in translational medicine, particularly the need for data standardization, consistent feature extraction methodologies, and rigorous model validation.

摘要

直肠癌是中国恶性肿瘤患者发病和死亡的主要原因之一。鉴于新辅助治疗和全直肠系膜切除术等治疗方法的进展,精确的术前评估对于制定个性化治疗方案至关重要。作为一种新兴技术,放射组学通过从医学图像中提取高通量定量特征,在直肠癌的诊断、治疗反应评估和预后分析中得到了广泛应用。因此,放射组学在优化临床决策方面显示出巨大潜力。在本文中,我们回顾了近期关于放射组学在直肠癌管理中应用进展的研究。该综述涵盖了肿瘤的TNM分期、新辅助治疗结果评估和生存预测。我们还讨论了转化医学未来发展面临的挑战和前景,特别是数据标准化、一致的特征提取方法和严格的模型验证的必要性。

相似文献

1
Radiomics in rectal cancer: current status of use and advances in research.
Front Oncol. 2025 Jan 17;14:1470824. doi: 10.3389/fonc.2024.1470824. eCollection 2024.
4
Role of MRI‑based radiomics in locally advanced rectal cancer (Review).
Oncol Rep. 2022 Feb;47(2). doi: 10.3892/or.2021.8245. Epub 2021 Dec 22.
5
Multi-parametric MRI radiomics for predicting response to neoadjuvant therapy in patients with locally advanced rectal cancer.
Jpn J Radiol. 2024 Dec;42(12):1448-1457. doi: 10.1007/s11604-024-01630-3. Epub 2024 Jul 29.
6
Artificial Intelligence-Driven Radiomics in Head and Neck Cancer: Current Status and Future Prospects.
Int J Med Inform. 2024 Aug;188:105464. doi: 10.1016/j.ijmedinf.2024.105464. Epub 2024 Apr 23.
7
MRI-based radiomics feature combined with tumor markers to predict TN staging of rectal cancer.
J Robot Surg. 2024 May 29;18(1):229. doi: 10.1007/s11701-024-01978-8.
9
The Role of Radiomics in Rectal Cancer.
J Gastrointest Cancer. 2023 Dec;54(4):1158-1180. doi: 10.1007/s12029-022-00909-w. Epub 2023 May 8.

引用本文的文献

本文引用的文献

1
Development and Validation of a Radiomics Model Based on Lymph-Node Regression Grading After Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer.
Int J Radiat Oncol Biol Phys. 2023 Nov 15;117(4):821-833. doi: 10.1016/j.ijrobp.2023.05.027. Epub 2023 May 24.
8
MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy.
Radiology. 2022 May;303(2):351-358. doi: 10.1148/radiol.211986. Epub 2022 Feb 8.
9
Radiomics Features at Multiparametric MRI Predict Disease-Free Survival in Patients With Locally Advanced Rectal Cancer.
Acad Radiol. 2022 Aug;29(8):e128-e138. doi: 10.1016/j.acra.2021.11.024. Epub 2021 Dec 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验