Brunson Debra N, Manzer Hader, Smith Alexander B, Zackular Joseph P, Kitten Todd, Lemos José A
Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA.
Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
bioRxiv. 2025 Jan 20:2025.01.20.633879. doi: 10.1101/2025.01.20.633879.
, a gut commensal, is a leading cause of opportunistic infections. Its virulence is linked to its ability to thrive in hostile environments, which includes host-imposed metal starvation. We recently showed that evades iron starvation using five dedicated transporters that collectively scavenge iron from host tissues and other iron-deprived conditions. Interestingly, heme, the most abundant source of iron in the human body, supported growth of a strain lacking all five iron transporters (Δ5Fe). To release iron from heme, many bacterial pathogens utilize heme oxygenase enzymes to degrade the porphyrin that coordinates the iron ion of heme. Although lacks these enzymes, bioinformatics revealed a potential ortholog of the anaerobic heme-degrading enzyme anaerobilin synthase, found in and a few other Gram-negative bacteria. Here, we demonstrated that deletion of OG1RF_RS05575 in (ΔRS05575) or in the Δ5Fe background (Δ5FeΔRS05575) led to intracellular heme accumulation and hypersensitivity under anaerobic conditions, suggesting encodes an anaerobilin synthase, the first of its kind described in Gram-positive bacteria. Additionally, deletion of , either alone or in the Δ5Fe background, impaired colonization in the mouse gastrointestinal tract and virulence in mouse peritonitis and rabbit infective endocarditis models. These results reveal that RS05575 is responsible for anaerobic degradation of heme and identify this relatively new enzyme class as a novel factor in bacterial pathogenesis. Findings from this study are likely to have broad implications, as homologues of are found in other Gram-positive facultative anaerobes.
作为一种肠道共生菌,是机会性感染的主要原因。其毒力与其在恶劣环境中生存的能力有关,其中包括宿主造成的金属饥饿。我们最近发现,利用五种专门的转运蛋白来逃避铁饥饿,这些转运蛋白共同从宿主组织和其他缺铁环境中 scavenge 铁。有趣的是,血红素是人体中最丰富的铁来源,支持缺乏所有五种铁转运蛋白的菌株(Δ5Fe)的生长。为了从血红素中释放铁,许多细菌病原体利用血红素加氧酶来降解与血红素铁离子配位的卟啉。虽然缺乏这些酶,但生物信息学揭示了在和其他一些革兰氏阴性细菌中发现的厌氧血红素降解酶厌氧胆红素合酶的潜在直系同源物。在这里,我们证明在(ΔRS05575)或Δ5Fe背景(Δ5FeΔRS05575)中缺失OG1RF_RS05575会导致细胞内血红素积累以及在厌氧条件下的超敏反应,这表明编码一种厌氧胆红素合酶,这是在革兰氏阳性细菌中描述的首例此类酶。此外,单独或在Δ5Fe背景下缺失,都会损害在小鼠胃肠道中的定殖以及在小鼠腹膜炎和兔感染性心内膜炎模型中的毒力。这些结果表明RS05575负责血红素的厌氧降解,并将这种相对较新的酶类鉴定为细菌发病机制中的一个新因素。这项研究的发现可能具有广泛的意义,因为在其他革兰氏阳性兼性厌氧菌中发现了的同源物。