文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

单细胞测序为海龙科鱼类进化适应的发育遗传基础提供了线索。

Single-cell sequencing provides clues about the developmental genetic basis of evolutionary adaptations in syngnathid fishes.

作者信息

Healey Hope M, Penn Hayden B, Small Clayton M, Bassham Susan, Goyal Vithika, Woods Micah A, Cresko William A

机构信息

Institute of Ecology and Evolution, University of Oregon, Eugene, United States.

Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, United States.

出版信息

Elife. 2025 Feb 3;13:RP97764. doi: 10.7554/eLife.97764.


DOI:10.7554/eLife.97764
PMID:39898521
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11790252/
Abstract

Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes , and . We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.

摘要

海马、管口鱼和叶形海龙是海龙科鱼类,它们进化出了非凡的特征,包括雄性怀孕、长吻、无齿和真皮骨质甲胄。导致这些特征进化的发育遗传和细胞变化在很大程度上尚不清楚。最近的海龙科基因组组装揭示了暗示性的基因含量差异,并为详细的遗传分析提供了机会。我们创建了海湾管口鱼胚胎的单细胞RNA测序图谱,以了解四个特征的发育基础:特化的头部形状、无齿、真皮甲胄和雄性怀孕。我们完成了标记基因分析,构建了遗传网络,并检查了选定基因的空间表达。我们在伸长的面部中鉴定出表达调控基因 和 的成骨软骨间充质细胞。我们没有发现牙原基细胞的证据,并且我们观察到在发育中的真皮甲胄中骨成细胞遗传网络的重新部署。最后,我们发现表皮细胞表达营养处理和环境感知基因,这可能与育幼环境相关。所研究的管口鱼进化创新由可识别的细胞类型组成,这表明衍生特征源自现有基因网络内的变化。未来针对多个阶段和物种的海龙科基因网络的研究对于理解这些鱼类的新特征是如何进化的至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/1b0a1f884b8e/elife-97764-fig2-figsupp50.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/740708e0ca9e/elife-97764-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/03f48ffa5455/elife-97764-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/f03d25798cad/elife-97764-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/f5ada9c32d1d/elife-97764-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/6870168e9028/elife-97764-fig2-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/2154c06282db/elife-97764-fig2-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/3c169bda10a8/elife-97764-fig2-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/bf6f415ff021/elife-97764-fig2-figsupp6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/85ae2196d688/elife-97764-fig2-figsupp7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/95bea8acb6d6/elife-97764-fig2-figsupp8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/7b37a77c20ec/elife-97764-fig2-figsupp9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/f48fb564f3e8/elife-97764-fig2-figsupp10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/e1cdf8ac661b/elife-97764-fig2-figsupp11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/ffde201167fc/elife-97764-fig2-figsupp12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/ea9f8948f82b/elife-97764-fig2-figsupp13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/3ea6b9cea598/elife-97764-fig2-figsupp14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/6032bb9d6259/elife-97764-fig2-figsupp15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/2b549f8f555a/elife-97764-fig2-figsupp16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/ea84cdaf89e4/elife-97764-fig2-figsupp17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/504433ffe536/elife-97764-fig2-figsupp18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/e1103ed90814/elife-97764-fig2-figsupp19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/15c36439e618/elife-97764-fig2-figsupp20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/8cd337fb5a8e/elife-97764-fig2-figsupp21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/11f7b975f82d/elife-97764-fig2-figsupp22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/54343480f2f6/elife-97764-fig2-figsupp23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/cf648cceecc6/elife-97764-fig2-figsupp24.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/130b907acbbe/elife-97764-fig2-figsupp25.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/3e91223f60f9/elife-97764-fig2-figsupp26.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/5950376b8eca/elife-97764-fig2-figsupp27.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/8d9dcdac8723/elife-97764-fig2-figsupp28.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/9bf27c814f79/elife-97764-fig2-figsupp29.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/302cdc6bcca7/elife-97764-fig2-figsupp30.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/e78010365fb8/elife-97764-fig2-figsupp31.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/0d20cec85c13/elife-97764-fig2-figsupp32.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/41e0a43e9ed4/elife-97764-fig2-figsupp33.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/2728842ac814/elife-97764-fig2-figsupp34.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/1eb607f1f3e4/elife-97764-fig2-figsupp35.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/42dd5f7beebb/elife-97764-fig2-figsupp36.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/cb9d1e934db6/elife-97764-fig2-figsupp37.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/cde8b80f8f1e/elife-97764-fig2-figsupp38.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/d590ae7e3e1f/elife-97764-fig2-figsupp39.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/7e25bb7cdd9d/elife-97764-fig2-figsupp40.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/7e25bb7cdd9d/elife-97764-fig2-figsupp41.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/21ebf56351d1/elife-97764-fig2-figsupp42.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/895a7546999c/elife-97764-fig2-figsupp43.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/47601cac8900/elife-97764-fig2-figsupp44.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/4af2bb0bea12/elife-97764-fig2-figsupp45.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/b77b0cbcc8a1/elife-97764-fig2-figsupp46.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/60b17095482b/elife-97764-fig2-figsupp47.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/1b0a1f884b8e/elife-97764-fig2-figsupp50.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/740708e0ca9e/elife-97764-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/03f48ffa5455/elife-97764-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/f03d25798cad/elife-97764-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/f5ada9c32d1d/elife-97764-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/6870168e9028/elife-97764-fig2-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/2154c06282db/elife-97764-fig2-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/3c169bda10a8/elife-97764-fig2-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/bf6f415ff021/elife-97764-fig2-figsupp6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/85ae2196d688/elife-97764-fig2-figsupp7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/95bea8acb6d6/elife-97764-fig2-figsupp8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/7b37a77c20ec/elife-97764-fig2-figsupp9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/f48fb564f3e8/elife-97764-fig2-figsupp10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/e1cdf8ac661b/elife-97764-fig2-figsupp11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/ffde201167fc/elife-97764-fig2-figsupp12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/ea9f8948f82b/elife-97764-fig2-figsupp13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/3ea6b9cea598/elife-97764-fig2-figsupp14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/6032bb9d6259/elife-97764-fig2-figsupp15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/2b549f8f555a/elife-97764-fig2-figsupp16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/ea84cdaf89e4/elife-97764-fig2-figsupp17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/504433ffe536/elife-97764-fig2-figsupp18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/e1103ed90814/elife-97764-fig2-figsupp19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/15c36439e618/elife-97764-fig2-figsupp20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/8cd337fb5a8e/elife-97764-fig2-figsupp21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/11f7b975f82d/elife-97764-fig2-figsupp22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/54343480f2f6/elife-97764-fig2-figsupp23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/cf648cceecc6/elife-97764-fig2-figsupp24.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/130b907acbbe/elife-97764-fig2-figsupp25.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/3e91223f60f9/elife-97764-fig2-figsupp26.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/5950376b8eca/elife-97764-fig2-figsupp27.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/8d9dcdac8723/elife-97764-fig2-figsupp28.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/9bf27c814f79/elife-97764-fig2-figsupp29.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/302cdc6bcca7/elife-97764-fig2-figsupp30.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/e78010365fb8/elife-97764-fig2-figsupp31.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/0d20cec85c13/elife-97764-fig2-figsupp32.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/41e0a43e9ed4/elife-97764-fig2-figsupp33.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/2728842ac814/elife-97764-fig2-figsupp34.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/1eb607f1f3e4/elife-97764-fig2-figsupp35.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/42dd5f7beebb/elife-97764-fig2-figsupp36.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/cb9d1e934db6/elife-97764-fig2-figsupp37.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/cde8b80f8f1e/elife-97764-fig2-figsupp38.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/d590ae7e3e1f/elife-97764-fig2-figsupp39.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/7e25bb7cdd9d/elife-97764-fig2-figsupp40.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/7e25bb7cdd9d/elife-97764-fig2-figsupp41.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/21ebf56351d1/elife-97764-fig2-figsupp42.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/895a7546999c/elife-97764-fig2-figsupp43.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/47601cac8900/elife-97764-fig2-figsupp44.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/4af2bb0bea12/elife-97764-fig2-figsupp45.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/b77b0cbcc8a1/elife-97764-fig2-figsupp46.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/60b17095482b/elife-97764-fig2-figsupp47.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fb/11790252/1b0a1f884b8e/elife-97764-fig2-figsupp50.jpg

相似文献

[1]
Single-cell sequencing provides clues about the developmental genetic basis of evolutionary adaptations in syngnathid fishes.

Elife. 2025-2-3

[2]
Single Cell Sequencing Provides Clues about the Developmental Genetic Basis of Evolutionary Adaptations in Syngnathid Fishes.

bioRxiv. 2024-10-15

[3]
The genome of the Gulf pipefish enables understanding of evolutionary innovations.

Genome Biol. 2016-12-20

[4]
Complete mitochondrial genomes of eight seahorses and pipefishes (Syngnathiformes: Syngnathidae): insight into the adaptive radiation of syngnathid fishes.

BMC Evol Biol. 2019-6-11

[5]
Standardised classification of pre-release development in male-brooding pipefish, seahorses, and seadragons (Family Syngnathidae).

BMC Dev Biol. 2012-12-29

[6]
Seahorse Brood Pouch Transcriptome Reveals Common Genes Associated with Vertebrate Pregnancy.

Mol Biol Evol. 2015-9-1

[7]
The evolution and physiology of male pregnancy in syngnathid fishes.

Biol Rev Camb Philos Soc. 2020-10

[8]
Leafy and weedy seadragon genomes connect genic and repetitive DNA features to the extravagant biology of syngnathid fishes.

Proc Natl Acad Sci U S A. 2022-6-28

[9]
A comparative analysis of the ontogeny of syngnathids (pipefishes and seahorses) reveals how heterochrony contributed to their diversification.

Dev Dyn. 2023-5

[10]
Evolutionary divergence of a Hoxa2b hindbrain enhancer in syngnathids mimics results of functional assays.

Dev Genes Evol. 2021-7

本文引用的文献

[1]
A multimodal zebrafish developmental atlas reveals the state-transition dynamics of late-vertebrate pluripotent axial progenitors.

Cell. 2024-11-14

[2]
The TET-Sall4-BMP regulatory axis controls craniofacial cartilage development.

Cell Rep. 2024-3-26

[3]
Near chromosome-level and highly repetitive genome assembly of the snake pipefish (Syngnathiformes: Syngnathidae).

GigaByte. 2024-1-11

[4]
Growth dynamics and molecular bases of evolutionary novel jaw extensions in halfbeaks and needlefishes (Beloniformes).

Mol Ecol. 2023-11

[5]
Single-cell analysis of lizard blastema fibroblasts reveals phagocyte-dependent activation of Hedgehog-responsive chondrogenesis.

Nat Commun. 2023-8-10

[6]
Single-Cell Atlas Reveals the Hemocyte Subpopulations and Stress Responses in Asian Giant Softshell Turtle during Hibernation.

Biology (Basel). 2023-7-12

[7]
scRNA-seq Analysis of Hemocytes of Penaeid Shrimp Under Virus Infection.

Mar Biotechnol (NY). 2023-6

[8]
An atlas of rabbit development as a model for single-cell comparative genomics.

Nat Cell Biol. 2023-7

[9]
Single-Cell RNA Sequencing Reveals Microevolution of the Stickleback Immune System.

Genome Biol Evol. 2023-4-6

[10]
Improvements to the Gulf pipefish genome.

GigaByte. 2023-2-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索