Garfinkel Chloe F, McCain Christy M
Ecology and Evolutionary Biology Department, University of Colorado Boulder, Boulder, CO, 80309, USA.
Ecology and Evolutionary Biology Department, University of Colorado Boulder, Boulder, CO, 80309, USA; Natural History Museum, University of Colorado Boulder, Boulder, CO, 80309, USA.
J Therm Biol. 2025 Jan;127:104063. doi: 10.1016/j.jtherbio.2025.104063. Epub 2025 Jan 27.
Larval and winter thermal limits may be vital for understanding responses to climate variability, but many studies of insect critical thermal limits focus on adults reared in benign conditions (lab or summer field conditions). For insects generally, temperature variability and thermal tolerance breadth are correlated. Thus, we predict broader thermal limits in adults compared to less-mobile larvae developing within a restricted microclimate. We also predict lower cold limits in winter adults compared to summer adults. To test for this thermal variability across life stages and seasons, we used a recirculating bath to determine critical thermal limits in two species of Colorado carrion beetles (Coleoptera: Staphylinidae: Silphinae) in which larvae develop within a carcass microclimate. For larval and adult comparisons, we used summer Thanatophilus lapponicus (n = 111) and Thanatophilus coloradensis (n = 46). For winter and summer comparisons, we used adult T. lapponicus (n = 103). We detected no difference between larvae and adults in T. lapponicus for either upper thermal limits (CTmax) or lower thermal limits (CTmin) for wild caught adults, bred larvae, and bred adults. In contrast, wild caught adults of T. coloradensis had a significantly lower CTmin (-5.7 ± 0.5 °C) compared to wild caught larvae (-3.0 ± 1.3 °C) and bred larvae (-3.5 ± 0.8 °C) with no difference in CTmax. Winter T. lapponicus adults displayed a nearly one-degree lower CTmin (-2.8 ± 1.6 °C) than summer adults (-1.9 ± 1.9 °C) with no difference in CTmax. These results demonstrate that even closely related, co-occurring species can have distinct strategies for coping with cold temperatures. And, in some cases, particularly for high-elevation specialists, larvae may benefit from a temperature-buffered microclimate. Heat tolerance was broad and less variable across life stages and seasons, emphasizing that variation in cold temperatures will be critical for responses to climate change, for example, changes in snow levels impacting insulation.
幼虫和冬季的热极限对于理解昆虫对气候变化的反应可能至关重要,但许多关于昆虫临界热极限的研究都集中在饲养于适宜条件下(实验室或夏季田间条件)的成虫身上。一般来说,对于昆虫而言,温度变异性和热耐受性广度是相关的。因此,我们预测成虫的热极限比在受限微气候中发育的活动较少的幼虫更宽。我们还预测冬季成虫的冷极限比夏季成虫更低。为了测试不同生命阶段和季节的这种热变异性,我们使用循环水浴来确定两种科罗拉多腐尸甲虫(鞘翅目:隐翅虫科:埋葬虫亚科)的临界热极限,其幼虫在尸体微气候中发育。对于幼虫和成虫的比较,我们使用了夏季的拉氏葬甲(n = 111)和科罗拉多葬甲(n = 46)。对于冬季和夏季的比较,我们使用了成年拉氏葬甲(n = 103)。对于野生捕获的成虫、饲养的幼虫和饲养的成虫,我们未检测到拉氏葬甲幼虫和成虫在上热极限(CTmax)或下热极限(CTmin)方面存在差异。相比之下,野生捕获的科罗拉多葬甲成虫的CTmin(-5.7 ± 0.5°C)显著低于野生捕获的幼虫(-3.0 ± 1.3°C)和饲养的幼虫(-3.5 ± 0.8°C),而CTmax没有差异。冬季拉氏葬甲成虫的CTmin(-2.8 ± 1.6°C)比夏季成虫(-1.9 ± 1.9°C)低近一度,CTmax没有差异。这些结果表明,即使是亲缘关系密切、同域分布的物种也可能有不同的应对低温的策略。而且,在某些情况下,特别是对于高海拔特化物种,幼虫可能受益于温度缓冲的微气候。耐热性在不同生命阶段和季节较为宽泛且变化较小,这强调了低温变化对于应对气候变化至关重要,例如,雪层变化影响隔热。