Yang Yaji, Zhou Haotian, Li Feilong, Zhang Yanhao, Yang Jianye, Shen Yidong, Hu Ning, Zou Quanming, Qin Leilei, Zeng Hao, Huang Wei
Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China.
J Transl Med. 2025 Feb 4;23(1):156. doi: 10.1186/s12967-025-06161-7.
The immune evasion and prolonged survival of Staphylococcus aureus (S. aureus) within macrophages are key factors contributing to the difficulty in curing osteomyelitis. Although macrophages play a vital role as innate immune cells, the mechanisms by which S. aureus survives within them and suppresses host immune functions remain incompletely understood.
This study employed confocal microscopy, flow cytometry, ELISA, and siRNA technology to assess the survival capacity of S. aureus within macrophages and the impact of inflammatory cytokines on its persistence. Proteomics was used to investigate the potential mechanisms and differential proteins involved in S. aureus intracellular survival. Additionally, confocal microscopy, flow cytometry, Mdivi-1 intervention, and Western blot were utilized to validate the role of mitophagy in supporting S. aureus survival. The study further explored how the HDAC11/IL10 axis enhances mitophagy to promote intracellular S. aureus survival by using HDAC11 overexpression, siRNA, and rapamycin intervention combined with confocal microscopy and flow cytometry.
The findings demonstrated that IL10 promotes mitophagy to clear mitochondrial reactive oxygen species (mtROS), thereby enhancing the intracellular survival of S. aureus within macrophages. Additionally, we discovered that the transcriptional repressor of IL10, HDAC11, was significantly downregulated during S. aureus infection. Overexpression of HDAC11 and the use of the autophagy activator rapamycin further validated that the HDAC11/IL10 axis regulates mitophagy via the mTOR pathway, which is essential for supporting S. aureus intracellular survival.
This study reveals that S. aureus enhances IL10 production by inhibiting HDAC11, thereby promoting mitophagy and mtROS clearance, which supports its survival within macrophages. These findings offer new insights into the intracellular survival mechanisms of S. aureus and provide potential therapeutic approaches for the clinical management of osteomyelitis.
金黄色葡萄球菌在巨噬细胞内的免疫逃逸和长期存活是导致骨髓炎难以治愈的关键因素。尽管巨噬细胞作为固有免疫细胞发挥着至关重要的作用,但金黄色葡萄球菌在其中存活并抑制宿主免疫功能的机制仍未完全明确。
本研究采用共聚焦显微镜、流式细胞术、酶联免疫吸附测定和小干扰RNA技术,评估金黄色葡萄球菌在巨噬细胞内的存活能力以及炎性细胞因子对其持续性的影响。蛋白质组学用于研究金黄色葡萄球菌细胞内存活的潜在机制和差异蛋白。此外,利用共聚焦显微镜、流式细胞术、Mdivi-1干预和蛋白质免疫印迹法验证线粒体自噬在支持金黄色葡萄球菌存活中的作用。该研究还通过过表达HDAC11、小干扰RNA和雷帕霉素干预,结合共聚焦显微镜和流式细胞术,进一步探究HDAC11/IL10轴如何增强线粒体自噬以促进细胞内金黄色葡萄球菌的存活。
研究结果表明,IL10促进线粒体自噬以清除线粒体活性氧(mtROS),从而增强金黄色葡萄球菌在巨噬细胞内的细胞内存活。此外,我们发现IL10的转录抑制因子HDAC11在金黄色葡萄球菌感染期间显著下调。HDAC11的过表达和自噬激活剂雷帕霉素的使用进一步证实,HDAC11/IL10轴通过mTOR途径调节线粒体自噬,这对支持金黄色葡萄球菌的细胞内存活至关重要。
本研究表明,金黄色葡萄球菌通过抑制HDAC11增强IL10的产生,从而促进线粒体自噬和mtROS清除,支持其在巨噬细胞内的存活。这些发现为金黄色葡萄球菌的细胞内存活机制提供了新的见解,并为骨髓炎的临床治疗提供了潜在的治疗方法。