Masselot Pierre, Gasparrini Antonio
Environment & Health Modelling (EHM) Lab, Department of Public Health, Environments & Society, London School of Hygiene & Tropical Medicine, UK.
Stat Methods Med Res. 2025 Mar;34(3):615-629. doi: 10.1177/09622802241313284. Epub 2025 Feb 5.
Multi-location studies are increasingly used in environmental epidemiology. Their application is supported by designs and statistical techniques developed in the last decades, which however have known limitations. In this contribution, we propose an improved modelling framework that addresses these issues. Specifically, this flexible framework allows the direct modelling of demographic differences across locations, defining geographical variations linked to multiple vulnerability factors, capturing spatial heterogeneity and predicting risks to new locations, and improving the assessment of uncertainty. We illustrate these new developments in an analysis of temperature-mortality associations in Italian cities, providing fully reproducible R code and data.
多地点研究在环境流行病学中的应用越来越广泛。过去几十年发展起来的设计和统计技术为其应用提供了支持,然而这些技术存在已知的局限性。在本论文中,我们提出了一个改进的建模框架来解决这些问题。具体而言,这个灵活的框架允许直接对不同地点的人口差异进行建模,定义与多种脆弱性因素相关的地理变异,捕捉空间异质性并预测新地点的风险,以及改进不确定性评估。我们在对意大利城市温度与死亡率关联的分析中展示了这些新进展,并提供了完全可重现的R代码和数据。