Suppr超能文献

中国一项关于自动乳腺容积扫描仪超声用于乳腺癌筛查诊断效能的多中心随机试验。

A multi-centre, randomised trial for diagnostic efficacy of the automatic breast volume scanner ultrasound for breast cancer screening in China.

作者信息

Xu Ying, Xu Yali, Shen Songjie, Mao Feng, Zhang Xiaohui, Zhang Yanna, Lin Yan, Zhou Yidong, Sun Qiang

机构信息

Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

Front Oncol. 2025 Jan 21;14:1421425. doi: 10.3389/fonc.2024.1421425. eCollection 2024.

Abstract

INTRODUCTION

The US plays a crucial role in screening Asian women for breast disease. ABUS offers several advantages over traditional HHUS, including quicker examination, objectivity, and the ability to store and reconstruct images. This study marks the first large-scale opportunistic screening of ABUS in the population.

METHODS

Between January 1, 2016, and December 31, 2019, 10,537 women aged 35-75 years from nine districts were randomly assigned to either HHUS or ABUS groups. Diagnostic methods were quantified, and comparisons were made using the Chi-square test.

RESULTS

The screening groups consisted of 5,445 participants for HHUS and 4,936 for ABUS. The HHUS and ABUS groups identified 90 carcinomas and 292 benign lesions or 71 carcinomas and 178 benign lesions, respectively. SE), SP, AC, PPV, and NPV for HHUS were 51.11%, 93.84%, 93.13%, 12.23%, and 99.13%, respectively, while for ABUS, they were 66.20%, 93.77%, 93.38%, 13.43%, and 98.98%. The area under the curve (AUC) values for HHUS and ABUS were 0.72 (95% CI: 0.67-0.78) and 0.86 (95% CI: 0.82-0.91), respectively, indicating superior diagnostic performance of ABUS over HHUS (Delong test p < 0.05).

DISCUSSION

ABUS is user-friendly, requires minimal training, reduces reliance on examiner experience, and demonstrates potential for superior sensitivity compared to HHUS in breast cancer screening.

摘要

引言

美国在亚洲女性乳腺癌筛查中发挥着关键作用。与传统手持超声(HHUS)相比,自动乳腺全容积超声(ABUS)具有诸多优势,包括检查速度更快、客观性更强以及具备存储和重建图像的能力。本研究是首次在人群中对ABUS进行大规模机会性筛查。

方法

在2016年1月1日至2019年12月31日期间,来自九个区的10537名年龄在35至75岁之间的女性被随机分配到HHUS组或ABUS组。对诊断方法进行量化,并使用卡方检验进行比较。

结果

筛查组中,HHUS组有5445名参与者,ABUS组有4936名参与者。HHUS组和ABUS组分别发现90例癌症和292例良性病变或71例癌症和178例良性病变。HHUS的灵敏度(SE)、特异度(SP)、准确性(AC)、阳性预测值(PPV)和阴性预测值(NPV)分别为51.11%、93.84%、93.13%、12.23%和99.13%,而ABUS的相应值分别为66.20%、93.77%、93.38%、13.43%和98.98%。HHUS和ABUS的曲线下面积(AUC)值分别为0.72(95%置信区间:0.67 - 0.78)和0.86(95%置信区间:0.82 - 0.91),表明ABUS在诊断性能上优于HHUS(德龙检验p < 0.05)。

讨论

ABUS操作简便,所需培训极少,减少了对检查者经验的依赖,并且在乳腺癌筛查中与HHUS相比显示出更高的灵敏度潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd3f/11790623/9aea81e658c3/fonc-14-1421425-g001.jpg

相似文献

7
Diagnostic performance of automated breast ultrasound and handheld ultrasound in women with dense breasts.
Breast Cancer Res Treat. 2020 Jun;181(3):589-597. doi: 10.1007/s10549-020-05625-2. Epub 2020 Apr 27.
9
Comparison of automated breast ultrasonography to handheld ultrasonography in detecting and diagnosing breast lesions.
Acta Radiol. 2016 Feb;57(2):162-9. doi: 10.1177/0284185115574872. Epub 2015 Mar 11.

引用本文的文献

本文引用的文献

1
External Evaluation of a Mammography-based Deep Learning Model for Predicting Breast Cancer in an Ethnically Diverse Population.
Radiol Artif Intell. 2023 Jul 26;5(6):e220299. doi: 10.1148/ryai.220299. eCollection 2023 Nov.
6
Cancer statistics in China and United States, 2022: profiles, trends, and determinants.
Chin Med J (Engl). 2022 Feb 9;135(5):584-590. doi: 10.1097/CM9.0000000000002108.
7
Global patterns of breast cancer incidence and mortality: A population-based cancer registry data analysis from 2000 to 2020.
Cancer Commun (Lond). 2021 Nov;41(11):1183-1194. doi: 10.1002/cac2.12207. Epub 2021 Aug 16.
10
Radiomics Improves Cancer Screening and Early Detection.
Cancer Epidemiol Biomarkers Prev. 2020 Dec;29(12):2556-2567. doi: 10.1158/1055-9965.EPI-20-0075. Epub 2020 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验